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Abstract
Extracellular DNA (exDNA) is abundant in many habitats, including soil, sediments, oceans and freshwater as well as the
intercellular milieu of metazoa. For a long time, its origin has been assumed to be mainly lysed cells. Nowadays, research is
collecting evidence that exDNA is often secreted actively and is used to perform a number of tasks, thereby offering an attractive
target or tool for biotechnological, medical, environmental and general microbiological applications. The present review gives an
overview on the main research areas dealing with exDNA, depicts its inherent origins and functions and deduces the potential of
existing and emerging exDNA-based applications. Furthermore, it provides an overview on existing extraction methods and
indicates common pitfalls that should be avoided whilst working with exDNA.
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Introduction

In contrast to intracellular DNA (iDNA), which is the DNA
located within cell membranes, extracellular DNA (exDNA)
represents the DNA located outside thereof. Such DNA can be
found in any kind of environmental samples. One of the best
definitions including information about its origin was given
by Pietramellara et al. (2009), stating that exDNA is
Boriginating from intracellular DNA by active or passive ex-
trusion mechanisms or by cell lysis^.

Dealing with environmental DNA, several abbreviations
are used to refer to similar or different items.Whilst a common
acronym for environmental DNA is eDNA, a number of au-
thors used this acronym for extracellular DNA, too.
Additionally, the terms exDNA or cfDNA (cell-free DNA)
were introduced to refer to extracellular DNA in order to pre-
vent confusion with environmental DNA. In this review, we

give the preference to the acronym exDNA. Marine biologists
often differentiate between aqueous-extractable Bsoluble
DNA^ (sDNA) and Bnon-soluble DNA^ (nsDNA); both frac-
tions are roughly representing exDNA and iDNA, respective-
ly (Lever et al. 2015). The acronyms esDNA, aDNA and
cirDNA stand for extracellular self-DNA, ancient DNA and
circulating DNA, respectively, and will be addressed in the
chapters Bsoil^, Bmarine and lake ecosystems^ and Bhuman
body ,̂ respectively.

When it has become known to be common in the environ-
ment in the early 1950s, exDNAwas studied in the context of
horizontal gene transfer (HGT) (Avery et al. 1944; Freeman
1951) and the ability of microorganisms to achieve antibiotic
resistance through transformation by foreign (extracellular
plasmid) DNA (Akiba et al. 1960; Romanowski et al. 1993).
During the 80s and 90s of the past century, exDNAwas stud-
ied in terms of its persistence in soil, i.e. protection against
nuclease degradation due to binding to various soil compo-
nents (Ogram et al. 1987; Paget et al. 1992; Vettori et al.
1996), and its degradation rates in estuarine and marine envi-
ronments (Paul et al. 1987).

Frostegård et al. (1999) evaluated DNA extraction efficien-
cies of several protocols and addressed the issue of extracting
extracellular and intracellular soil DNA simultaneously. By
then, exDNA was found to be omnipresent, and with this
awareness, a variety of research foci on different natural envi-
ronments emerged:
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& The persistence and ecological relevance of exDNA in soil
(reviewed by Levy-Booth et al. 2007; Pietramellara et al.
2009);

& The persistence, function and turnover of exDNA in ma-
rine and aquatic ecosystems (reviewed by Torti et al.
2015);

& The occurrence, relevance of exDNA and possible
exDNA-derived therapies in the human body (reviewed
by Aucamp et al. 2016; Cooper et al. 2013; Thierry et al.
2016);

& The importance and the functions of exDNA in the forma-
tion of biofilms of pathogenic and environmental micro-
organisms (reviewed by Montanaro et al. 2011 and
Wnorowska et al. 2015 (exDNA), Hobley et al. 2015
(biofilms in general), Wolska et al. 2016 (genetic control),
Payne and Boles 2016 (matrix interactions and resulting
implications) and Azeredo et al. 2017 (methods)).

Extracellular DNA has also been investigated within dead
wood (Gómez-Brandón et al. 2017a), cattle rumen and ma-
nure (Chroňáková et al. 2013; Fliegerová et al. 2014; Nagler et
al. 2018), aerobic and anammox granules (Cheng et al. 2011;
Xiong and Liu 2012; Dominiak et al. 2011) and human epi-
thelial cells used in forensics (Wang et al. 2017). In addition,
exDNAwas found to act as a trap for infectious organisms in
mammalians (reviewed byCiesluk et al. 2017) and during root
tip growth of plants (Hawes et al. 2012; Pietramellara et al.
2013). Finally, exDNA is assumed to act as a species-specific
growth inhibitor all over the tree of life (Mazzoleni et al.
2015b; esDNA).

Whilst most of recently published reviews regarding
exDNA focus on a single specific environment, the present
review aims to summarise the main features, functions and
pertinences of exDNA in all so far investigated natural envi-
ronments (Fig. 1). In doing so, we also intend to depict
existing as well as emerging exDNA-based applications.
Furthermore, we give a short overview on existing extraction
methods and indicate common pitfalls that should be avoided
whilst working with exDNA.

Soil

In soils, exDNA is omnipresent and has first been studied with
regard to its adsorption to sand, clay and other soil colloids
(Fig. 1) (e.g. Lorenz andWackernagel 1987; Paget et al. 1992;
Pedreira-Segade et al. 2018). Once bound to these particles,
exDNA is partly physically protected from degradation,
allowing persistence for years (Agnelli et al. 2007; Nielsen
et al. 2007). The actual persistence of exDNA depends on a
number of factors such as its composition, methylation or
conformation and the prevailing environmental conditions.
In that context, rapid desiccation, low temperatures, high salt

concentrations, low pH and a high content of expandable clay
minerals have all been found to slow down exDNA degrada-
tion (Crecchio et al. 2005; Pietramellara et al. 2009). An at-
tempt to estimate the age of soil exDNA by radiocarbon dating
suggested a survival time ranging from 21,000 years (14C age)
to 900,000 years (mean residence time), even though it was
suggested to treat these results with care, as a contamination
(e.g. with fossil carbon) could not be totally excluded (Agnelli
et al. 2007). Despite its binding to various minerals, exDNA
still preserves its ability to transform competent microbial
cells in the soil (Fig. 1) (Morrissey et al. 2015; Romanowski
et al. 1993; Thomas and Nielsen 2005). Whilst some studies
suggested that HGT frequencies in soil are low (Nielsen et al.
1998; Pietramellara et al. 2007; Pietramellara et al. 2006;
Thomas and Nielsen 2005), some hypothesised that the actual
transformation rates are underestimated due to the high num-
ber of unculturable microorganisms (Pietramellara et al.
2009). However, the long persistence of DNA in soil brings
about an increased presence of antibiotic resistance genes that
might be passed from cell to cell (Poté et al. 2003), with both
ecological and evolutionary implications. The quality of
exDNA is depending on its state of degradation, fragment
sizes ranging from 80 to more than 20,000 bp, as shown by
standard agarose gel electrophoresis (Ascher et al. 2009b).
The integrity of large fragments of exDNA was shown by
the successful amplification of a 1700-bp portion, almost the
complete fungal 18S gene (Ascher et al. 2009b). A large per-
centage of exDNA in soil was found to be double stranded,
being detectable with methods specifically binding to double-
stranded DNA (intercalation dyes, e.g. PicoGreen) (Agnelli et
al. 2004; Ascher et al. 2009b).

After active or passive excretion or release from lysed cells
(i.e. after cell death/necrosis or virus attack), exDNA can be
diffused in the soil through various mechanisms. Vertically,
the movement was found to be either directed towards the
groundwater through leaching or towards the soil surface
through advection in water capillaries; horizontally, move-
ment follows the soil water flow direction (Agnelli et al.
2004; Ascher et al. 2009a; Ceccherini et al. 2007; Poté et al.
2003). In both directions, exDNA may reach areas with little
nutrient content. Accounting for over 10% of the extractable P
in soil and containing essential elements such as N and C,
exDNA may act as a nutrient and energy source especially
in soils with low nutrient input (reviewed by Levy-Booth et
al. 2007; Nielsen et al. 2007). After a breakdown by extracel-
lular and cell-associated nucleases (DNases), smaller exDNA
molecules are taken up by microbial cells, where they either
serve as building blocks for newly synthetized nucleic acids or
are further broken down to essential nutrients (Morrissey et al.
2015).

Just like in other environments, soil exDNA plays a crucial
role in the formation of biofilms, exhibiting mainly structural
functions as discussed below and serves as an information
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pool for HGT. Similarly, soil particles and organisms such as
microalgae and microorganisms are known to form biological
soil crusts particularly in the topsoil of arid soils, where the
production of extracellular polymeric substances (EPS) in-
cluding exDNA leads to an increased water retention (e.g.
Adessi et al. 2018). Such soil-microbe systems are thought
to be self-organised in a way that microbes shape the state of
oxygen supply through their activity (respiration), causing a
shift between oxygen supply and high potential activity on the

one hand and protection from desiccation and predation in a
low-potential activity regime on the other (Young and
Crawford 2004). Supporting the formation of pores and ag-
gregates according to its structural properties, exDNA could
possibly contribute to this self-organisation.

Bearing additional taxonomic and phylogenetic informa-
tion with regard to iDNA, exDNA has therefore been used
to compare information about microbial communities deriv-
ing from both fractions of the total soil DNA pool (Agnelli et

Fig. 1 Main functions of extracellular DNA (exDNA) in different natural environments. Darker shaded areas represent functions deriving from the
informational character of exDNA, whilst lighter areas comprise functions owed to the Bsticky^ character of exDNA
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al. 2004; Ascher et al. 2009b; Ceccherini et al. 2009;
Chroňáková et al. 2013; Gómez-Brandón et al. 2017b).
These studies revealed that some sequences found in the
exDNA fraction are not found in the iDNA fraction of the
total DNA pool and suggest that they are ancient or so-
called relic DNA. Such DNA, potentially persisting in soil
for long time spans, reflects the historical biodiversity of the
investigated environment and can give important information
about past climatic conditions (see the BApplications^ sec-
tion). A study conducted by Carini et al. (2016) actually
showed that the exDNA inflated the observed prokaryotic
and fungal richness by up to 55% if compared to iDNA only.
Following these findings, it was argued that the quantitatively
relevant presence of exDNA might also cause an underesti-
mation of the actual temporal and spatial variability of soil
microbial communities (Fierer 2017). This may put a new
perspective on the concept of Beverything is everywhere, but
the environment selects^, stating that most species are present
at least in low abundances in all soils and will thrive as soon as
the environmental conditions allow for (Baas Becking 1931;
Fenchel and Finlay 2004; Nagler et al. 2016). For any assump-
tions concerning diversity and microbial species abundance, it
is thus indispensable to distinguish between environmental
DNA (eDNA) and exDNA on the one hand, and the extracel-
lular (exDNA) and intracellular fraction (iDNA) of the total
DNA pool on the other (reviewed by Taberlet et al. 2012a)
(see the BApplications^ section).

In an investigation on litter autotoxicity, the role of ex-
tracellular self-DNA (esDNA) has first been addressed by
Mazzoleni et al. (2015a), who found that the growth not
only of plants but also of soil animals and microorganisms
was inhibited when conspecific exDNA was added to the
growth substrate (Mazzoleni et al. 2015a, b). This effect
was found to be very specific and applied only for conspe-
cific but not for other heterologous exDNA. The authors
hypothesised that this inhibition effect represents a mech-
anism of maintaining diversity. In an attempt to interpret
these far-reaching findings, Veresoglou et al. (2015)
discussed that esDNA in soil could function as a conspe-
cific stress-signalling molecule rather than an inhibitory
substrate. Similarly, Duran-Flores and Heil (2015) argued
that esDNA could belong to the group of damage-
associated molecular patterns (DAMP) that cause the local
development of resistance-related responses by the affect-
ed plant. All these findings, however, are rather prelimi-
nary and require additional research to adequately interpret
and describe the underlying mechanisms.

Finally, the role of exDNA in soil is also linked to plant
physiology. The presence of exDNA in the growth medium of
plants enhances the growth of lateral roots and root hairs and
the effect is linked to an altered expression of specific peptide
hormone genes that are controlling root morphology
(Paungfoo-Lonhienne et al. 2010). In that context, exDNA

has the function of a signalling compound. In the context of
root growth itself, its role is different. Wen et al. (2009) re-
ported that exDNA is a component of the root cap slime
known to be involved in the increased resistance of growing
root caps against soil-borne pathogens, and that exDNA deg-
radation resulted in a loss thereof (Wen et al. 2009). Later on,
several studies suggested that exDNA actively exported from
the root tip may function similar to the exDNA secreted in
human neutrophil extracellular traps (NETs) and traps patho-
genic microorganisms in close proximity to the root tips
(reviewed by Hawes et al. 2011): once released by active
secretion (Wen et al. 2017), the exDNA attracts and
immobilises pathogens as well as soil contaminants in a
host-microbe specific manner (Hawes et al. 2012; Hawes et
al. 2016; Pietramellara et al. 2013).

Not strictly soil but still closely related, antimicrobial resis-
tance might emerge with increased frequency in livestock
waste management structures. Zhang et al. (2013) found that
several antimicrobial resistance genes were present in the
exDNA and iDNA pool of such environments and that HGT
is a potential mechanism for the spread of antimicrobial resis-
tance. Investigating rumen-borne microbial communities,
considerable differences between exDNA and iDNA bacterial
profiles have been found (Fliegerová et al. 2014), suggesting
differing lysis and/or DNA secretion of the microorganisms.

Marine and aquatic ecosystems

In the marine environment, exDNA is present throughout,
from the estuarine to the anoxic deep sea. Its origin, dynamics
and implications have been reviewed by Torti et al. (2015). It
is estimated that around 90% of the total DNA pool in the
ocean occur as exDNA (Dell'Anno and Danovaro 2005),
which accounts for a global 0.45 Gt of DNA in the uppermost
10 cm of sea water, where amounts of exDNA are three orders
of magnitudes lower than in sediments (Torti et al. 2015).
Marine exDNA is either autochthonous or allochthonous, pas-
sively or actively released from decaying, virus-attacked or
growing (micro)organisms. If the exDNA is released in the
water column, it sediments only if complexed with particles
heavy enough to sink to the sea floor (Herndl and Reinthaler
2013). However, once released, the fate of exDNA includes
natural transformation, degradation through ubiquitous
DNases and subsequent incorporation by microbial cells,
long-term preservation and abiotic decay (Fig. 1). As for
long-term preservation, binding of exDNA in marine sedi-
ments is similar to that of soil; the interaction is electrostatic
and requires the presence of inorganic cations to bind the
negatively charged inorganic and organic sediment surfaces
with the phosphate groups of DNA (Fig. 1) (Lorenz and
Wackernagel 1987). Furthermore, exDNA is preserved after
contact with brines of deep anoxic hypersaline lakes (Borin et
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al. 2008), where non-adapted bacteria might lyse with a higher
frequency due to osmotic stress, giving rise to an environment
favouring high rates of HGT.

Next to exDNA in the water column and in the sediments,
exDNA can also be located in the extracellular polymeric
substance (EPS) of marine biofilms, as reviewed by Decho
and Gutierrez (2017). EPS form a major component of the
total pool of dissolved organic carbon in the ocean, but the
role of exDNA in this specific environment has not been in-
vestigated so far.

Regarding lake and other freshwater environments,
exDNA-related studies are very scarce. A study reporting
about ferruginous sediments in a tropical lake in Indonesia
used the exDNA bound to the sediment to study the microbial
consortium and detected exDNA in decreasing amounts from
the lake ground to 30-cm sediment depth as well as differences
in the taxonomic composition between exDNA and iDNA
(Vuillemin et al. 2016). Another study focussed on the persis-
tence of antimicrobial resistance genes in the exDNA pool of a
river sediment and reported that resistance genes often incor-
porated into plasmid DNA exhibit a longer persistence than
chromosomically encoded 16S rRNA genes, suggesting that
exDNA represents a major reservoir for antibiotic resistance
information (Mao et al. 2014). In the Arctic sea ice, exDNA
has been found in concentrations higher than those reported
from any marine environment and it was hypothesised that sea
ice may be a hotspot for HGT in the marine environment
(Collins and Deming 2011).

Biofilms

One of the best-studied environments housing exDNA are
biofilms, the focus lying particularly on those formed by clin-
ically relevant microorganisms such as Staphylococcus spp.,
Streptococcus spp., Candida spp., Pseudomonas aeruginosa
and mixed oral biofilms. Other biofilms formed by environ-
mental microorganisms, plant pathogens (Sena-Velez et al.
2016), or in the activated sludge during wastewater treatment
have been studied to a lesser extent (e.g. Dominiak et al.
2011).

The presence of DNA in the EPS and its responsibility for
the stickiness of the by then so called Bslime^ or Bmats^ was
discovered as early as in 1955 for some halophilic bacteria
(Smithies and Gibbons 1955) and several years later with a
focus on human pathogens for Pseudomonas aeruginosa
(Murakawa 1973). Beginning in 1996, exDNA was increas-
ingly noted in the EPS matrix of activated sludge and in pure
cultures of Pseudomonas putida (reviewed by Flemming and
Wingender 2010). The origin of this DNA has long thought to
be lysed cells. Later, it was found that the exDNA is present in
species-specific amounts in different single- and multiple-
species biofilms (Steinberger and Holden 2005) and that it is

organised in clear patterns, forming grid-like structures or fil-
amentous networks (Fig. 1) (Allesen-Holm et al. 2006;
Böckelmann et al. 2006; Flemming et al. 2007). As a conse-
quence, exDNA has been described as a structural component
of the extracellular matrix, being essential especially during
biofilm formation (Conover et al. 2011; Kawarai et al. 2016;
Martins et al. 2010; Novotny et al. 2013; Nur et al. 2013;
Seper et al. 2011; Whitchurch et al. 2002; Zhao et al. 2013)
(reviewed by Flemming et al. 2016; Montanaro et al. 2011)
and thus being actively secreted by the biofilm-producing mi-
croorganisms (Barnes et al. 2012; Kilic et al. 2017; Liao et al.
2014; Rose and Bermudez 2016; Zafra et al. 2012). A
genome-wide screening for genes involved in exDNA release
during biofilm formation by S. aureus was recently done
(DeFrancesco et al. 2017).

In biofilms of mixed bacterial consortia such as granular
activated sludge, differences in the composition of exDNAvs.
iDNA were detected applying a fingerprinting approach
(Cheng et al. 2011) and indicating a species-specific DNA
release originating mostly from active secretion (Dominiak
et al. 2011). Moreover, microbial aggregation during aerobic
granulation and consequently biomass density and size are
positively affected by increased exDNA amounts (Xiong
and Liu 2012). In oral biofilms, the exDNA consists not only
of microbial but also of host-DNA but exhibits similar func-
tions than in other biofilms (reviewed by Jakubovics and
Burgess 2015; Schlafer et al. 2017).

Focusing on the role of exDNA in biofilms, several studies
(Doroshenko et al. 2014; Hathroubi et al. 2015; Schilcher et al.
2016) found increased exDNA concentrations after exposure
to low concentrations of antibiotics and vice versa, a higher
antimicrobial resistance with higher amounts of exDNA
(Johnson et al. 2013; Lewenza 2013), suggesting a protective
function. Through its negative charge, exDNA acts as a che-
lator of cationic antimicrobials (Mulcahy et al. 2008) but can
also act as a protection system against aminoglycosides
(Chiang et al. 2013). The main protective power against anti-
microbials or predation, however, is owed to the exDNA’s
function to structurally stabilise biofilms and thereby increase
antimicrobial resistance (see the BApplications^ section).
exDNA has also been shown to attract and bind with positive-
ly charged amyloids in various biofilms, thereby accumulating
peptides and causing a polymerisation of the matrix and stim-
ulating autoimmunity (reviewed by Payne and Boles 2016;
Randrianjatovo-Gbalou et al. 2017; Schwartz et al. 2016).
An interaction with polysaccharides was found in P.
aeruginosa and S. mutans biofilms, where both components
form a web of fibres and function as a skeleton allowing bac-
teria to adhere and grow (Payne and Boles 2016; Pedraza et al.
2017).

The role of exDNA as a source of genetic information in
the context of HGT within the biofilm has been addressed in
several studies (e.g. Merod and Wuertz 2014; Wang et al.
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2002) and was found to occur frequently, as biofilms are
hotspots, i.e. offer ideal conditions for HGT including high
cell density, increased genetic competence and an accumula-
tion of exDNA. Conjugation has been shown to be up to 700-
fold more efficient in biofilms compared to planktonic bacte-
rial cells (Flemming et al. 2016), further promoting antimicro-
bial resistance in biofilms. Moreover, several other functions
of exDNA in biofilms have been described. In most biofilms,
exDNA is needed throughout the biofilm development
(Brockson et al. 2014) but especially for the initial adhesion
and aggregation of bacteria on surfaces (Das et al. 2010; Das
et al. 2011; Jermy 2010; Tang et al. 2013). In Caulobacter
crescentus biofilms, however, exDNA binds to the holdfast
of swarmer cells, promotes their dispersal to places with less
present exDNA and thereby prevents biofilm maturation
(Berne et al. 2010; Kirkpatrick and Viollier 2010).
Furthermore, it has been suggested that self-organisation of
cells in actively expanding biofilms of P. aeruginosa occurs
directly on the exDNA filaments (Böckelmann et al. 2006) or
through the construction of a network of furrows supported by
exDNA molecules (Gloag et al. 2013). During mechanical
stress of a biofilm, exDNAwas found to exhibit a distinguish-
able role in controlling the viscoelastic relaxation of the bio-
film (Peterson et al. 2013). In addition, Sapaar et al. (2014)
suggested that exDNA may induce the morphological change
from yeast to hyphal growth in C. albicans biofilms, but with-
out providing any explanation about the possible underlying
mechanisms.

Human body

Next to the exDNA secreted by clinically relevant microor-
ganisms forming biofilms on or inside the human body (cov-
ered in the section biofilm), exDNA of predominantly endog-
enous origin can be found in the extracellular milieu of the
human body including blood, lymph, bile, milk, urine, saliva,
mucous suspension, spinal and amniotic fluid. Beginning in
the 1960s, exDNAwas discovered in the plasma and serum of
patients with a variety of diseases, including rheumatoid ar-
thritis, pancreatitis, inflammatory bowel disease, hepatitis and
oesophagitis. By the 1970s, it was shown to be double-
stranded and of a similar size range as in soil (i.e. from 180
to 10,000 bp) (van der Vaart and Pretorius 2008). With the
development of more sensitive assays, it was found to be also
present in healthy subjects, albeit to a lesser extent (Anker et
al. 1999). It has been proposed that this type of circulating
exDNA (cirDNA, cell-free cfDNA or plasma DNA) is re-
leased by apoptosis and necrosis, by bacteria and viruses,
and via active release from highly proliferating cells
(reviewed by Thierry et al. 2016). Anker et al. (1976) obtained
evidence that human lymphocytes can release complexes con-
taining DNA or produce enzymes that are capable of

synthesising DNA extracellularly. If originating, however,
from such an active cellular release mechanism, exDNA is
often bound to other plasma constituents such as RNA, lipids
and proteins, being in that case called virtosomes (Fig. 1). As
part of virtosomes, exDNA shows the ability to migrate to
different parts of the body, enter target cells and alter their
physiological properties such as the immune response, by
sharing antigenic information (Anker et al. 1984; Aucamp et
al. 2016; Skog et al. 2008). Peters and Pretorius (2012)
highlighted that this active release and uptake of nucleic acids
is a characteristic of all organisms and cell types, and that in
contrast to the neo-Darwinian dogma, physical and behaviour-
al traits can be inherited through this cycling. This is because
there has been found evidence that not only somatic but also
germ cells might be subject to genetic and epigenetic modifi-
cations via exDNA (intensively reviewed and discussed by
Aucamp et al. 2016). In this context, it has been hypothesised
that the exDNA in human blood vessels might derive to a
large extend from metabolic DNA, which is—as opposite to
the stable genetic DNA—a specially synthesised low-
molecular-weight fraction of DNA involved in the regulation
and performance of RNA production and other cellular func-
tions. Deriving from such a de novo synthesis in cells (van der
Vaart and Pretorius 2008), exDNA differs from the DNA in
the nucleus containing single- and double-strain breaks and
accumulations in GC-rich regions (Veiko et al. 2008).

Another field of studies regarding exDNA in the human
body is the immune system, where neutrophils secrete
exDNA together with actin, histone, peroxidases and proteins,
thereby forming a neutrophil extracellular trap (NET), a sticky
matrix around the cell (Fig. 1) (Brinkmann et al. 2004). These
NETs are part of the immune system and are formed as a
response to defence-pathway-inducing signals. Pathogens
can be chemotactically attracted by the NETs and are then
immobilised and potentially killed by the antimicrobial com-
ponents of the trap (Halverson et al. 2015; Hawes et al. 2015).
Hawes et al. (2015) proposed that NETs gain most of their
bactericidal character through the removal of surface-
stabilising bacterial cations by the DNA phosphodiester back-
bone, resulting in bacterial lysis. Recent studies, however,
revealed that an overproduction of NETs followed by an ac-
cumulation of exDNA contributes to the pathogenesis of some
diseases. Breast cancer cells can induce neutrophils to produce
NETs without infection (Park et al. 2016), thereby exploiting
the host cells in order to promote metastases. Furthermore,
NETs can cause the aggregation and implantation of cancer
cells due to its sticky character (Hawes et al. 2015). In this
context, the genometastasis hypothesis was formulated, stat-
ing that exDNA derived from tumour cells just like virtosomes
can enter healthy cells and lead to the formation of metastases
as reviewed by García-Olmo et al. (2012) and discussed by
Thierry et al. (2016). A variety of other pathologies have re-
cently been linked to exDNA, including the chronic airway
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disease, where NETs accumulate in the airways leading to an
activation of the innate immune system and impairing the
patients’ state of health (Wright et al. 2016). Similarly, in
patients suffering from dry eye disease, the production and
degradation of exDNA is altered, allowing exDNA and
NETs to accumulate in the tear film and resulting in an inflam-
mation (Sonawane et al. 2012; Tibrewal et al. 2013).

On the one hand, the functional role of exDNA inside the
human body and especially the blood vessels is to serve as an
intercellular messenger in the shape of virtosomes (Gahan and
Stroun 2010), spreading the immunological information about
pathogenic invaders but also supporting the dissemination of
malignant information causing oncogenesis, cell invasion,
metastasis and the development of resistance against radio-
therapy and chemotherapy (Aucamp et al. 2016). On the other
hand, exDNA has been shown to act as a trap for invading
pathogens in the shape of NETs, being in that way a part of the
innate immune system and combatting an infection. The same
benign NETs can cause, however, pathophysiological effects
in cancer, autoimmune pathologies, sepsis, thrombotic illness
and in the inflammatory response through different mecha-
nisms, as highlighted above (Ciesluk et al. 2017; Cooper et
al. 2013; Park et al. 2016).

Methodological considerations with exDNA
extraction

Extraction methods targeting exDNA vary amongst environ-
mental matrices. In the soil, exDNA can strongly be bound to
soil colloids like clay minerals or humic acids, resulting in a
co-extraction of organic and inorganic soil compounds inter-
fering with downstream analyses. To overcome these prob-
lems and prevent a lysis of intact cells, exDNA is desorbed
from soil particles via slightly alkaline solutions or phosphate
buffers and yielded in the supernatant after centrifugation,
avoiding the use of cell-lysing reagents and optionally includ-
ing DNase inhibitors (e.g. Agnelli et al. 2007; Ascher et al.
2009b; Ceccherini et al. 2009; Ogram et al. 1987; Taberlet et
al. 2012b). Applying such a sequential extraction, next to
providing exDNA, increases the total amount of not only ex-
tractable soil DNA but also that of iDNA (e.g. Ascher et al.
2009b; Nagler et al. 2018; Wagner et al. 2008).

Analogously, a discrimination between sDNA and nsDNA
is proposed in marine sediment studies, applying a washing in
alkaline phosphate buffers followed by centrifugation prior to
standard DNA extraction (Alawi et al. 2014; Lever et al.
2015). During sampling of exDNA from water samples, a
filtration through filters retaining the exDNA is required and
it was found that the binding of exDNA is significantly dif-
fering with filter material, pore size and several water quality
parameters such as pH or total suspended solids (Liang and
Keeley 2013).

In biofilm research, exDNA extraction without contamina-
tion of genomic DNAwas found to work best with enzymatic
treatment methods yielding more exDNA than a simple cen-
trifugation (Wu and Xi 2009). In cancer research, a discrimi-
nation between weakly bound and tightly bound exDNA is
made, and accordingly, a first step to remove weakly bound
exDNA is applied using 5 mMEDTA and a second step using
trypsin to remove exDNA tightly bound to cell surfaces is
suggested (Laktionov et al. 2004).

In general, independent of the environmental matrix, any
harsh step (physico-chemical) has to be avoided during the
extraction procedure, so as to avoid potential cell lysis.

Applications

exDNA as source of specific genetic information

One of the most immanent features of exDNA is the addi-
tional phylogenetic information with respect to iDNA.
Therefore, exDNA can be used to improve the accuracy of
assessing the soil microbial community composition
(Pietramellara et al. 2009), e.g. via comparative genetic fin-
gerprinting of the extracellular and intracellular fraction of
the total DNA pool (Agnelli et al. 2004; Ascher et al. 2009b;
Chroňáková et al. 2013) or via quantitative PCR (Gómez-
Brandón et al. 2017a, b).

exDNA as a proxy of microbial activity (microbial
turnover)

Another feature is the origin of exDNA in various environ-
ments, which was expected to be mainly lysed (dead) cells
(Levy-Booth et al. 2007), whilst iDNA is attributed to intact
(alive and potentially alive) cells. Consequently, a ratio of both
DNA fractions (exDNA:iDNA) might provide a reliable ap-
proximate measure for microbial activity in soils and other
environments (Gómez-Brandón et al. 2017a, b; Nagler et al.
2018). Surprisingly, the activity of different microbes was
found to not correlate perfectly with the ratio of
exDNA:iDNA but could best be tracked measuring exDNA
amounts without relation to iDNA (Nagler et al. 2018). These
results suggested that exDNA is released by microorganisms
proportional to their activity. Similarly, Dlott et al. (2015)
found a unexpected low rRNA:rDNA ratio when trying to
establish a method to measure individual microbial activity
and these ratios were due to high amounts of amplifiable
exDNA. Both results suggest that the exDNA fraction, which
is suitable in its quality for a qPCR or other downstream mo-
lecular methods, seems to derive to a large part from actively
released DNA and might thus reflect microbial activity, whilst
the exDNA deriving from lysed cells is not yielded using these
methods. These results should be considered when applying
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methods such as the viability PCR (Emerson et al. 2017;
Nocker et al. 2006; Wagner et al. 2008) or a treatment with
DNase I/proteinase K (Villarreal et al. 2013). These methods
are based on the assumption that exDNA mainly derives from
dead cells. Consequently, iDNA and total DNA are measured
by a degradation of the exDNA in one of two parallel samples
to give a live/dead ratio. In fact, exDNA may not only have
derived from recently lysed and active cells but may also be
relic DNA that has persisted outside of intact cell membranes
for decades and centuries, especially when bound to inorganic
particles such as soil colloids. Thus, an activity tracking using
exDNA should be further investigated considering this ancient
exDNA probably being present at a low but stable rate in a
variety of environments.

exDNA as specific target matrix for (prokaryotic
and eukaryotic) biodiversity survey studies

Within the field of environmental DNA research (Thomsen
and Willerslev 2015), a recent approach focused on the extra-
cellular fraction of environmental DNA and aimed to study
the soil biodiversity at large scale (landscape scale; e.g. vege-
tation map) from large and thus representative sample vol-
umes by applying a metabarcoding approach (e.g. Orwin et
al. 2018; Taberlet et al. 2012b). However, quantitative as well
as qualitative conclusions should be interpreted with caution,
as the results might be influenced by actively released and
ancient exDNA.

exDNA as tool for evolution research

In the field of marine biology, the identification and enumer-
ation of microscopic remains in sediments such as fossilised
protists can be supported studying ancient exDNA (aDNA),
being reported from sediments under anoxic, but also oxic
conditions and can date back to the Holocene and
Pleistocene (Agnelli et al. 2007; Lejzerowicz et al. 2013).
Such data can be useful to give insights into the evolutionary
history of the studied species but have also been used to track
human activities along the shores of an alpine lake (Giguet-
Covex et al. 2014).

exDNA as a target for biofilm treatment

Representing an attractive target for biofilm control, exDNA
has been extensively studied and reviewed (e.g. Okshevsky
andMeyer 2015; Okshevsky et al. 2015; Penesyan et al. 2015;
Wnorowska et al. 2015). Next to its digestion with DNase
(Aung et al. 2017; Bhongir et al. 2017; Brown et al. 2015a;
Brown et al. 2015b; Rajendran et al. 2014;Waryah et al. 2017;
Ye et al. 2017), also the use of antibodies to target the DNA-
binding proteins (DNABII) located at the vertex of crossed
exDNA strands was proposed (Brockson et al. 2014;

Novotny et al. 2016; Rocco et al. 2017) in order to damage
structural integrity and consequently increase susceptibility of
the biofilm constituents to antibiotic agents. Similarly, several
genes associated with the release of exDNA or with autolysis
as well as quorum sensing inhibitors can be the target of an
anti-biofilm therapy (e.g. Bao et al. 2015; Beltrame et al.
2015; Si et al. 2015; reviewed by Wolska et al. 2016). A
nanomaterial cleaving exDNA of S. aureus biofilms was also
proposed as a promising therapeutic material against biofilms
(Thiyagarajan et al. 2016).

Deduced from its role as a main constituent of the EPS in
biofilms, exDNA has been identified as a key contributor to
uranium biomineralisation. It has been stated that the use of
microorganisms producing exDNA in their biofilm may pro-
vide a cheap alternative to standard physiochemical treatment
processes during the remediation of sites contaminated with
radionuclides (Hufton et al. 2016).

In medical sciences, exDNA provides a useful tool for di-
agnostics as well as therapy monitoring, as its concentrations
correlate with a variety of pathologies including cancer
(Laktionov et al. 2004) and autoimmune disorders (Raptis
and Menard 1980; reviewed by O’Driscoll 2007). Some stud-
ies also highlight the possibility to use DNase I to treat tumour
cells as it targets the exDNA that facilitates the aggregation of
the cells (Alekseeva et al. 2017; Hawes et al. 2015). During
pregnancy, the entire foetal genome circulates in the maternal
blood, enabling the non-invasive detection of foetal genetic
disorders (Fan et al. 2012).

Interestingly, exDNA has also been found to be useful in
forensics: using chemical force microscopy, exDNA can be
located and quantified on the surface of human epithelial cells
or on other surfaces, after a transfer through contact with skin
and saliva. In that way, it provides a new tool in the forensic
analysis of touch samples (Wang et al. 2017).

Concluding, it can be stated that exDNAwas often attrib-
uted to mainly derive from dead cells; it has been shown that
actively released exDNA makes up a quantitatively relevant
fraction of the total exDNA pool of different environments.
An active release also goes hand in hand with a better pro-
tection of the exDNA against DNases through the binding on
different extracellular compartments such as minerals, lipids
and proteins or through methylation (Böckelmann et al.
2006). Once arranged to the desired structure, such extracel-
lular exDNA-containing complexes can perform a number
of tasks in different environments, owed either to the sticky
character of the electrically charged exDNA molecule, or to
the information that the exDNA can bear for other cells (Fig.
1). Next to these functions, exDNA can also serve as a
source of energy and nutrients to other cells after a fragmen-
tation by DNases. All these properties of exDNA provide a
great variety of possible applications that have been devel-
oped or are being developed across different fields of
research.
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