
Recent advances in deriving human endodermal tissues
from pluripotent stem cells
Daniel O Kechele1 and James M Wells1,2,3

Available online at www.sciencedirect.com

ScienceDirect
The utilization of directed differentiation of human pluripotent

stem cells to generate human tissues is quickly evolving. Here

we review recent advances in the derivation and applications of

human endodermal tissues, including the esophagus, lung,

pancreas, liver, stomach, small intestine, and colon.

Improvements in tissue transcriptional and functional

maturation, multicellular complexity, and scalability allow

better development and disease modeling, large-scale drug

and toxicity screening, and potentially cell therapeutic

applications.
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Over the past decade, the generation and use of human

tissues derived from directed differentiation of human

pluripotent stem cells (hPSCs) have advanced atan extraor-

dinary pace with many seminal discoveries made every

year.Guidedby development,we nowpossess theability to

generate a vast number of cell and tissue types originating

from all three embryonic germ layers. For example, hPSC-

derived definitive endoderm is capable to differentiate into

gastrointestinal organoids by controlling the signaling

required for embryonic anterior–posterior and dorsal–

ventral patterning (Figure 1). While comprehensive

reviews of organoid technology and applications have been

published [1–5], this review will focusonrecentadvances in

generating, maturing, and using human endodermal-

derived tissues, including the gastrointestinal tract, lungs,

pancreas, and liver.
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Esophagus — new frontier of human
esophageal research
The direct differentiation of hPSC into human

esophageal organoids (HEOs) was recently reported

[6��,7�]. By mirroring normal development of the

esophagus, manipulation of the TGFb/BMP, FGF, and

retinoic acid signaling pathways directed the

differentiation of definitive endoderm into SOX2+P63+

dorsal anterior foregut and then HEOs (Figure 1). These

HEOs had a remarkable level of transcriptional maturity

when compared to human esophagus and contained basal

and suprabasal cells that formed a stratified squamous

epithelium, particularly when grown on an organotypic

raft culture (Figure 2a) [6��,7�]. HEOs were used as

a model to study the molecular pathways regulating

normal esophageal development and pathways that

cause esophageal birth defects. For example, BMP and

Jagged2-NOTCH signaling were shown to be required

for suprabasal and keratin differentiation [7�]. Mutations

in SOX2 cause esophageal atresia in humans and using

HEOs as a model system, Trisno et al. showed that

defects in esophageal development caused by SOX2 loss

may be due to ectopic activation of WNT signaling [6��].
While both of these new HEO systems are well-suited to

study esophageal epithelium, they lack smooth muscle,

enteric nerves and immune cells, which are critical for

normal esophageal function and for modeling complex

diseases like trachea-esophageal fistulas, motility defects,

eosinophilic esophagitis, and Barrett’s metaplasia.

Lung — patterning airway and alveolar
organoids
The first report of hPSC-derived respiratory organoids used

a directed differentiation approach to generate both

proximal and distal lung tissues [8,9]. Recently, numerous

additional methods to differentiate hPSCs into regional-

specific lung tissues have been reported (summarized in

Ref. [9]). During human lung development, NKX2-1

ventral foregut endoderm and fetal buds tip progenitors

have the potential to differentiate into proximal airway and

distal alveolar epithelium (Figure 2b) [8–14,15��,16]. A

number of lung differentiation protocols use cell sorting

enrichment of NKX2.1-expressing progenitors for long-

term cultures [13,15��,16]. Single cell RNA-sequencing

(scRNA-Seq) of NKX2-1 progenitors identified pathways,

including WNT, that are associated with differentiation of

SFTPC+ alveolar epithelial type 2 (AT2) cells [13,14]. On

the basis of this information, activation of canonical WNT

signaling in NKX2-1 progenitors or bud tip progenitors was

able to induce rare SFTPC cells [9–11,13,14,15��,16].
www.sciencedirect.com

mailto:james.wells@cchmc.org
https://doi.org/10.1016/j.ceb.2019.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ceb.2019.07.009&domain=pdf
http://www.sciencedirect.com/science/journal/09550674


Human endodermal tissues from pluripotent stem cells Kechele and Wells 93

Figure 1
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Directed differentiation of gastrointestinal organoids.

Schematic of directed differentiation of esophageal (HEO) [6��,7�], fundic (HFGO) [41,42], antral (HAGO) [39,42], intestinal (HIO) [43], and colonic

organoids (HCO) [50��,51], which can be used to model tissue development, function, and disease. Representative images of gastrointestinal

organoids five weeks following hPSCs (HEO are eight weeks). Scale bar represents 1 mm.
These AT2 cells could be purified, serially passaged, grown

at an air–liquid interface, and differentiate into AT1 cells

[9,10,14,15��], consistent with a reported subset of AT2

cells that act as a self-renewing multipotent alveolar pro-

genitor [17,18]. HPSC-derived AT2 cells contained

surfactant processing lamellar bodies [9–11,14,15��], which

could functionally process proSFTPB into its mature

isoform, secrete surfactant, and respond to inflammatory

signaling [15��]. While WNT signaling is required for the

formationofNKX2-1 progenitors anddistal lung patterning

[13,14,15��,16], removing WNT signaling was required for
www.sciencedirect.com 
differentiation into of proximal airway cell types including

basal and secretory cells, and multiciliated cells [9–11,16].

As is the case in other developing organs, WNT signaling

plays distinct temporal roles during lung development and

maturation.

These regionally specific lung organoids provide new

opportunities to model human lung organogenesis,

differentiation, and disease. Airway organoids derived

from cystic fibrosis patient’s iPSCs showed impaired

CFTR function using the forskolin-swelling assay
Current Opinion in Cell Biology 2019, 61:92–100
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Figure 2
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Directed differentiation of esophageal and lung organoids.

(a) P63+SOX2+ esophageal progenitors grown in organotypic raft culture formed a stratified squamous epithelium [6��,7�]. BMP and NOTCH

signaling are required for suprabasal differentiation [7�]. SOX2 repressed WNT signaling required for NKX2-1 respiratory competence [6��]. (b)

NKX2-1 progenitors and bud tip progenitors gave rise to both airway and alveolar epithelium, the specification of which is dependent on WNT

signaling [8–14,15��,16]. Airway organoids had a variety of secretory cells (green), basal (brown) and multiciliated cells (yellow) [10,11,16]. These

airway organoids were used to model mechanisms of multiciliated cell differentiation and fibrotic diseases, including cystic fibrosis [11,16].

Alveolar organoids contain AT2 cells (orange), which are capable of self-renewal, differentiating into AT1 cells (blue), and have functional lamellar

bodies and produce surfactant, which are defective in diseases affecting alveolar epithelium [10,11,14,15��].
(Figure 2b) [16,19]. Alveolar organoids differentiated

from iPSCs of patients with SFTPB mutations lacked

lamellar bodies, could not process proSFTPC or produce

surfactant [15��]. Lamellar body morphology is also a

potential readout for drug toxicity screening [14]. Lung

bud organoids, which have both airway and alveolar

differentiation potential, formed highly branched

structures in vitro [10,11] and codeveloping mesenchyme

allowed for in vivo transplantation and maturation [8,11].

These lung bud organoids recapitulated phenotypic

characteristics of respiratory syncytial virus infection

and inherited fibrotic lung disease, including alveolar

epithelial cell death and increased mesenchymal

proliferation and ECM deposition, respectively [11].

Pancreas — making functional b cells and
modeling diabetes pathogenesis
For nearly two decades, many laboratories have strived to

produce functional b cells for the treatment of patients
Current Opinion in Cell Biology 2019, 61:92–100 
with diabetes. The directed differentiation of hPSCs into

pancreatic and endocrine progenitors has been highly

successful [20,21]. However, because of our limited

understanding of later stages of b cell development

and maturation, hPSC-derived b-like cells were not fully

functional in their response to dynamic glucose levels and

negative feedback regulation [5,22–24,25�,26,27�,28,29].
ScRNA-Seq performed throughout the in vitro b cell

differentiation protocols provided valuable insight

necessary to improve the differentiation of functional b
cells [26,28]. During development, b cells are part of an

aggregate of endocrine cells called islets. Our understand-

ing of islet morphogenesis is still evolving [24], but it is

clear that mechanical transduction from the extracellular

matrix (ECM) plays a significant role. Low levels of

integrin-mediated YAP signaling are critical for the

specification of endocrine progenitors, as well as

inhibiting proliferation to promote differentiation and

functional maturation of in vitro derived b cells
www.sciencedirect.com
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(Figure 3a) [29,30,31��]. To mimic b cell maturation

caused by compaction during islet formation, immature

insulin expressing b cells were reaggregated in a similar

stoichiometric ratio of human islets (Figure 3b) [25�,26].
These scalable b cells clusters were more metabolically

and functionally mature, indicated by a switch

to oxidative phosphorylation and their improved ability

to respond to dynamic glucose challenge relatively similar

to isolated islets [25�,26]. Upon transplantation, these b
cells clusters were quickly vascularized, persisted for

months, and could functionally response to acute glucose

challenge within days after transplant [25�].

Human tissues derived from hPSC can be used to model

the etiology and pathogenesis of diabetes. A toxicity screen

on heterogeneous pancreatic cultures identified that the

pesticide, propargite, caused dose-dependent DNA

damage and necrosis specifically in b cells, due to their

low glutathione levels (Figure 3b) [27�]. b cells derived

from patient iPSCs with glutathione S-transferase variants

were highly susceptible to propargite. The pathogenesis of

diabetes extends beyond the pancreas, where high

circulating glucose causes diabetic vasculopathy, which

is not well understood. Human blood vessel organoids,

composed of codeveloping endothelium and pericytes,

were treated with high glucose and inflammatory cytokines

to mimic diabetic microvasculature [32�]. Recapitulating

diabetic patient pathologies, these organoids revealed

drastically increased ECM deposition mediated by altered

DLL4-NOTCH3 signaling between the endothelium and

pericytes. These studies utilizing human-derived tissues

for large-scale toxicology screening and elucidation of

mechanisms of diabetes are prime examples of the

applications of evolving organoid technology.

Liver — building the hepatic
microenvironment for pharmaceutical
applications
Research using liver organoids continues to utilize

innovative approaches to understand the hepatic micro-

environment, produce functional tissue for transplanta-

tion, and develop large-scale drug screening platforms.

ScRNA-Seq revealed considerable heterogeneity during

hepatic endoderm specification from definitive endoderm

[33��]. By closely mirroring development, Ang et al.
mapped out the temporal signaling required for hepatic

competence to improve the differentiation of

homogenous hepatic progenitors, as well as deriving more

metabolically mature hepatocytes [34�]. ScRNA-Seq of

3D liver bud organoids, generated by combining hepatic

endoderm, mesenchymal stem cells, and HUVECs,

revealed that each cell type had distinct signs of

maturation due to coculture (Figure 3c), although they

all remained developmentally fetal [33��,35]. These liver

bud organoids had a strong hypoxia gene signature in
vitro, which was quickly resolved in vivo where the

hypoxic signature likely helped promote angiogenesis
www.sciencedirect.com 
within the transplant. An in silico receptor-ligand pairing

screen identified potential multicellular crosstalk within

the liver bud organoids and knockdown and high

throughput imaging experiments validated pathways,

including VEGFA-VEGFR2, EDN1-TIE1, and JAK3,

which are partially responsible for the hepatic maturation,

angiogenesis, and structural integrity, respectively.

To better model liver development, function, and

fibrosis, liver-specific mesenchyme is required.

Multiple groups generated self-renewing hepatic

stellate cells, which produce ECM and are the fibro-

genic cell in the damaged liver [36–38]. Unlike cultured

primary stellate cells, hPSC-derived stellate cells are

basally inactive but can functionally store Vitamin A

and respond to injury stimuli by increasing prolifera-

tion, migration, and ECM [36]. When challenged with

acetaminophen, cocultures of stellate cells and

hepatocytes had evidence of increased fibrosis,

supporting their application in toxicity screening. Liver

sinusoidal endothelial cells (LSECs) can also be

differentiated from hPSCs, which upon transplantation

mature, self organize around hepatic endoderm, and

form connections with mouse vasculature [37,38].

These hPSC-derived stellate cells and LSEC enhanced

hepatic endoderm maturation more than mesenchymal

stem cells and HUVECs [37]. Using hPSC-derived

hepatic endoderm, LSECs, and septum transversum

mesenchyme, Takabe et al. engineered a scalable

platform to generate thousands of reproducible liver

bud organoids with the ability to metabolize drugs and

improved liver failure survival when transplanted into

mice [38]. These recent innovations to improve hepatic

organoids biological function, reproducibility and

scalability bring them closer to clinical and

pharmaceutical applications.

Stomach — making acid
Previously generated antral organoids lack the cells

required for gastric acidification [39,40]. McCracken

et al. identified that low WNT signaling repressed antral

identity in order to specify the fundic region of the human

stomach (Figure 1) [40,41]. This study established that

MEK inhibition and BMP activation are sufficient for the

differentiation of acid-secreting parietal cells. Acid secre-

tion could be stimulated with histamine and blocked with

proton pump inhibitors, making these fundic organoids a

novel model to study gastric acid secretion [40–42].

Furthermore, while pathogenic Helicobacter pylori
infection induced hyperproliferation in both antral and

fundic organoids, only acid-secreting fundic organoids

had a SHH-dependent induction of PD-L1 expression

and spasmolytic polypeptide-expressing metaplasia.

This illustrates the importance of both gastric organoid

models to understand regional-specific therapeutic

strategies [42].
Current Opinion in Cell Biology 2019, 61:92–100
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Figure 3
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Maturation of pancreatic b cell and hepatic endoderm for pharmaceutical and clinical applications.

(a) Proliferation and differentiation of PDX1 ductal/endocrine and b cell maturation are regulated by ECM activation of ITGA5 YAP1 NOTCH

signaling [29,30,31��]. (b) Mixed populations of immature b cells can be functionally and metabolically matured by clustering insulin b cells [26,27�]
or utilized in toxicity screening to identify environmental factors that selectively kill b cells [27�]. (c) Differentiation of hPSCs into endodermal and

mesodermal hepatic lineages, including heterogeneous and more mature hepatic endoderm (HE) [33��,34�,35], liver sinusoidal endothelial cells

(LSEC) [37,38], as well as the septum transversum mesenchyme (STM) [38], mesenchymal stem cell (MSC), or functional hepatic stellate cells

(HSC) [36,37]. Together these cells formed multicellular liver bud organoids, which differentially matured the individual cell types, could be

transplanted to rescue rodent liver failure, and are scalable to perform large-scale toxicity screens [33��,35,36,38].
Small intestine — maturing through
complexity and mechanical stimulation
Since the first generation of human intestinal organoids

(HIOs) from hPSCs [43], the focus has been to enhance

functionality, complexity and scale up of HIOs, with the

goals of modeling intestinal physiology, disease

processes, and transplantation-based therapeutics. Initial

efforts to transplant HIOs into mice identified that growth

in vivo over the span of 8–12 weeks resulted in

tremendous growth and functional maturation [44,45].

Despite this, the intestinal epithelium was still not

equivalent to postnatal human intestinal tissue [45]
Current Opinion in Cell Biology 2019, 61:92–100 
and was lacking important cell types that may promote

functional development. To ascertain the importance of

these additional components, enteric nerves, immune

cells, microbiota, and mechanical strain, all of which play

a role in intestinal maturation, have been engineered into

HIOs (Figure 4). The enteric nervous system (ENS) of

the gastrointestinal tract comes from neural crest cells.

Incorporation of hPSC-derived neural crest cells into

HIOs resulted in formation of enteric nerves and glia

that formed functional neuromuscular connections with

smooth muscle cells capable of peristalsis when matured

in vivo [46]. Furthermore, incorporation of an ENS
www.sciencedirect.com
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Figure 4
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Diverse mechanisms to mature intestinal organoids.

Methods to introduce complexity and maturity to HIOs. Introduction of the enteric nervous system (ENS) into the mesenchyme promoted epithelial

and mesenchymal maturity and the differentiated neurons (green) formed functional neuromuscular synapses that regulated smooth muscle (pink)

contraction in transplanted HIOs (tHIO) [46]. Immune cytokine IL-2 increased organoid growth and matured the digestive and defensive machinery

in the epithelium [47]. Likewise, colonization by non-pathogenic E. coli promoted increased epithelial barrier function [45]. Mechanical strain in

tHIOs promoted villi growth, a more defined TA zone (red), and smooth muscle growth increased contractile force [49].
enhanced both epithelial and mesenchymal maturation.

Coculture of HIOs with T cells, their conditioned media,

or IL-2 increased growth, digestive and defensive

transcriptional signatures mediated through the STAT3

and mTOR pathways [47]. These immune-matured

organoids had increased transporters and metabolizing

enzymes, could transport glucose and pharmaceuticals

across the epithelial barrier, had functional CFTR

channel, and secreted more mucus and hormones.

Colonization of HIOs with non-pathogenic Escherichia
coli induced epithelial maturation, innate anti-microbial

response, and angiogenic gene signatures, as well as

enhanced barrier function mediated through NFkB-
dependent and hypoxia-dependent mechanisms [45].

During development, mechanical forces imposed by

intestinal lengthening and smooth muscle differentiation

caused villus morphogenesis and the establishment of the

transit-amplifying (TA) progenitor zone [48]. Similarly,

introduction of longitudinal mechanical strain into the

lumen of transplanted HIOs induced robust vilification, a

more defined TA zone, and improved contractile force of

smooth muscle [49]. These studies provide insight into

intestinal maturation and can be utilized to study motility,

absorption, and barrier function.

Colon — New tools to study colon
development and disease
Several reports have used signaling pathways that are

known to posteriorize gastrula stage embryos to

posteriorize human endoderm into colonic organoids

(HCOs) [50��,51]. Múnera et al. demonstrated that a pulse

of BMP signaling immediately following mid/hindgut
www.sciencedirect.com 
endoderm patterning is sufficient to initiate the posterior

HOX code and a colonic-specific gene signature (Figure 1)

[50��]. These HCOs expressed colonic-specific mucus

and enteroendocrine cells in vitro, which persisted fol-

lowing in vivo maturation. Alternatively, two groups used

prolonged WNT signaling to induce a posterior signature

[51,52]. Differentiated HCOs from familial adenoma

polyposis patient-derived iPSCs showed hallmarks of

overactive WNT signaling and proliferation consistent

with adenomas, which could be rescued using geneticin-

induced APC mutation read-through [51]. For some

applications, HCOs might represent a more physiological

system than immortalized colorectal cancer cell lines as a

model system to investigate human colonic agenesis,

diarrhea, inflammatory bowel disease, and colon cancer.

Perspectives and future directions
Recent advances to generate human tissues via organoid-

based technology have focused on recreating complex tissue

microenvironments through multicellular cocultures. These

approaches have opened up exciting opportunities to model

human organogenesis and pediatric diseases. Currently,

hPSCs-derived tissues arenotequivalent to their adult tissue

counterparts, and in some cases, this may limit their ability to

faithfully model adult onset diseases or application as

tissue therapies. However, incorporating hPSC-derived

mesenchymal, neural, endothelial, and hematopoietic

lineages [53–56] is allowing the field to generate more fully

functional organoids. The ability to selectively add and

remove particular cell types is allowing for mechanistic

studies of cell–cell communication that maintains tissue

homeostasis or drives disease pathogenesis when disrupted.
Current Opinion in Cell Biology 2019, 61:92–100
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Efforts to study organ–organ interactions are being made

possible through interconnected microfluidic devices.

Moving forward, improvements in organoid reproducibility,

scalability, and functional readouts for large-scale drug and

toxicity screens will be a priority. Screening compounds on

representative libraries of human organoids derived from

diverse populations will provide invaluable insight into

toxicity and potentially streamline drug approval for

patients. Finally, organoids from patient-derived iPSCs will

provide new diagnostic tools to better identity and

understand patient-specific pathologies and even new

resources to replace damaged tissues.
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