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"for such a large number of problems there will be 
some animal of choice, or a few such animals, on which 
it can be most conveniently studied."  

 

Krogh Principle 
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Leonelli  S & Ankeny RA  Endeavour, 2013 



"choosing the right organism for one’s research is as 

important as finding the right problems to work on” 

 

Sydney Brenner 
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Nobel lecture, 2002 



• non-human species that are studied in order to 
understand a range of biological phenomena 

• with the hope that data, models and theories 
generated will be applicable to other organisms 

What is an animal model system? 
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Leonelli  S & Ankeny RA  Endeavour, 2013 



Essential characteristics of  
an animal model organism 
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Modified from  
Matthews BJ & Vosshall LB JEB, 2020 

• An appropriate model organism for research 
question 

• Easy to rear and work with 

• Availability of genome sequence and gene expression 
profile 

• Ability to introduce genetic material 

• Ability to develop transgenic animals 

• Ability to perform gene knock-down and knock-out 

• Ability to perform targeted mutagenesis 



Example of non-mammalian animal models 
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Xenopus laevis 

Caenorhabditis elegans Drosophila melanogaster 

Ambystoma mexicanum 

Nothobranchius furzeri 

Harpegnathos saltator 



Lesson for human biology from flies.. 
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1933: Thomas Hunt Morgan – The role played 
by chromosomes in heredity 
1946: Hermann Joseph Muller – The 
production of mutations by means of X-ray 
irradiation 
1995: Edward B. Lewis, Christiane Nüsslein-
Volhard, Eric F. Wieschaus – The genetic 
control of early embryonic development 
2004 : Richard Axel – Odour receptors and the 
organisation of the olfactory system (mainly 
rodent work) 
 
2011: Jules A. Hoffmann – The activation of 
innate immunity 
2017: Jeffrey C. Hall, Michael Rosbash, Michael 
W. Young – molecular mechanisms controlling 
the circadian rhythm 

https://droso4schools.wordpress.com/why-fly/ 

http://www.nobelprize.org/nobel_prizes/medicine/laureates/1933/morgan-facts.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1933/morgan-facts.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1933/morgan-facts.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1933/morgan-facts.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1946/muller-facts.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2004/axel-facts.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2011/hoffmann-facts.html
https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/
https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/
https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/
https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/
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……. 

 
Kim et al., Nat Rev Mol Cell Bio, 2020 

Comparison of research models 



Genetic strategies 
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• Random mutagenesis 

• Targeted genome engineering tools 

• RNA perturbation tools* 

• Gene expression systems 
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Random mutagenesis 

Types 

• Radiation-based 
– X-ray 

– Ultraviolet 

– Gamma-ray 

• Chemical-based 
– EMS 

– ENU 

• Insertional mutagenesis 
– P-element 

– Tol2-based 

– Retrovirus 
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Radiation and Chemical-based mutagenesis 

Applications 
– Gene perturbation 

 
Advantage 

• Uniformly saturate the genome with mutations 

 
Disadvantage 

– Need to identify the mutated gene using traditional 
techniques is labor-intensive and time consuming 

– However, with whole-genome sequencing (WGS), it is 
now possible to sequence hundreds of strains,  

– but determining which mutations are causative 
among thousands of polymorphisms remains 
challenging. 

 Auerbach C. Chemical mutagenesis 1973  
Haelterman NA et al., Genome Res 2014 
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Random mutagenesis 

• In 1920s, Hermann Muller’s experiment 
demonstrated that exposure to X-rays, can cause 
genetic mutations 

• Muller exposed Drosophila to x-rays, mated the flies, 
and observed the number of mutant phenotypes in 
the offspring.  

• Muller's experiments with X-rays established that X-
rays mutated genes and that egg and sperm cells are 
especially susceptible to such genetic mutations. 
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1946 Nobel Prize  

for the discovery of the production of mutations by means of X-ray irradiation 

Hermann Joseph Muller 

https://tinyurl.com/mullerexpt 
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Chemical mutagenesis 

• Involves treatment of animals or reproductive 
cells with alkylating agents 

– N-Ethyl-N-nitrosourea (ENU) 

– Ethyl methanesulfonate (EMS) 

• Screen for particular phenotype 

 

 

 

ENU EMS 
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Chemical mutagenesis cause DNA  
base traversions 
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Chemical mutagenesis in C. elegans 

 
 
Sydney Brenner  Genetics, 1994 

• Treat worms with EMS (0.05M) for 4 hours 

• Screen offsprings 
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Chemical mutagenesis in C. elegans 

 
 
Sydney Brenner  Genetics, 1994 
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Chemical mutagenesis in zebrafish 

 
 
Mullins M et al.,  Curr Biol, 1994 
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Zebrafish mutation project 

 
Kettleborough RN et al., Nature, 2013 
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Chemical mutagenesis in zebrafish 

• Zebrafish Mutation Project at the Wellcome Sanger Institute, UK 
generated a mutant archive of over 40,000 alleles  

• Covering 60% of zebrafish protein-coding genes. 
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Insertional mutagenesis 

Types 

• P-element transposon-based 

• Retrovirus-based 

 

Applications 

Knockout 

 

Advantage 

Relative ease of identifying the mutated genes * 
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P element in Drosophila 

• P elements are cut-and-paste transposons in 
the genomes of Drosophila 

• The transposition of these P elements is 
catalyzed by an enzyme, the transposase 

• This enzyme is naturally produced only in 
germline tissues. 

• 1000s of P-element fly lines have been 
cataloged with their chromosomal location 
(FlyBase Consortium, 2002). 

 

 

 

 
Adams M & Sekelsky J Nat Rev, 2002 

Inverted repeats Transposase 
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P-element in Drosophila 
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P-element in Drosophila 
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Tol2 in zebrafish 

 
Poeschla M & Valenzano DR J. Expt. Biol, 2020 
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Tol2-mediated Gene trap 

Kawakami K et al., Dev Cell, 2004 
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Kawakami K et al., Dev Cell, 2004 

Tol2-mediated Gene trap 
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Retrovirus-based mutagenesis in zebrafish 

 
Amsterdam A et al., Genes Dev, 1999 

• Murine leukaemia 
virus/vesicular 
stomatitis virus 

• Can integrate into 
many different sites 
in the chromosome 
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Retrovirus-based mutagenesis in zebrafish 

 
Amsterdam A et al., Genes Dev, 1999 
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Retrovirus-based mutagenesis in zebrafish 

 
Amsterdam A et al., Genes Dev, 1999 
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Retrovirus-based mutagenesis in zebrafish 

 
Amsterdam A & Hopkins N Methods Cell Bio, 2004 

• Advantage:  

– insertion provides a molecular tag that can be used to identify 
the disrupted gene. 
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Inverse PCR to identify disrupted gene 

 
Amsterdam A & Hopkins N Methods Cell Bio, 2004 
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Chemical vs instertional mutagenesis in zebrafish 

 
Amsterdam A & Hopkins N Trends Genetics, 2006 
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Targeted genome editing 

• ZFN 

• TALEN 

• CRISPR 

 

 

 

How it is done? 

• Inject into embryos or eggs 

– ZFN – mRNA or 

– TALEN – mRNA or 

– CRISPR – Cas9 mRNA or protein and gRNA 
targeting specific DNA sequence 

“Class of programmable nuclease” 
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Targeted genome editing 

• Genome editing with programmable 
nucleases depends on cellular responses to a 
targeted double-strand break (DSB). 

 
Chandrasegaran S & Carroll D Jour. Mol. Biol., 2016 
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How to detect mutation? 

• RFLP (Restriction fragment length 
polymorphism) 

• HRM 

• T7 endonuclease assay 

• DNA sequencing 

 

 

 

Restriction fragment length polymorphism 
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High resolution melting analysis 

Samarut E et al., BMC Genomics 2016 
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Zinc-finger nuclease 

• Zinc finger - small protein structural motif  

• most abundant DNA recognition domain in 
eukarya 

 

 

 

 
Chandrasegaran S & Carroll D Jour. Mol. Biol., 2016 
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Zinc-finger nuclease 

 

 

 

Palpant NJ & Dudzinski D Gene Therapy, 2012 
Urnov FD et al., Nat Rev 2010 

• 3 and 6 individual zinc finger motifs and bind target 
sites ranging from 9 basepairs to 18 basepairs in length 

• Engineered zinc finger arrays are fused to a DNA 
cleavage domain of FokI nuclease to generate zinc 
finger nucleases. 
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ZFN in Drosophila 

 

 

 

 
Bibikova M et al., Genetics 2002 
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ZFN in Drosophila 

 

 

 

 
Bibikova M et al., Genetics 2002 



42 

Zinc-finger nuclease in zebrafish 

 

 

 

Meng X et al., Nat. Biot, 2008 

RFLP assay 
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Zinc-finger nuclease in zebrafish 

Meng X et al., Nat. Biot, 2008 
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TALEN 

• Transcription activator-like (TAL) effector 
nucleases (TALEN) 

• made by fusing a TAL effector DNA-binding 
domain to a DNA cleavage domain (nuclease) 

• TAL effector? 

– proteins secreted by Xanthomonas bacteria when 
they infect plants 

– here they enter the nucleus, bind to effector-specific 
promoter sequences, and activate the expression of 
individual plant genes, which can either benefit the 
bacterium or trigger host defenses 
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TALEN 
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TALEN 

Applications 

Knock-out 

Knock-in 

 

Advantages 

Target almost any region 

Relatively more precise 

 

Disadvantages 

Relatively complex to construct 
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Bedell VM et al., Nature 2012 

TALEN in zebrafish 
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Bedell VM et al., Nature 2012 
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CRISPR 

• clustered regularly interspaced short 
palindromic repeats (CRISPR) 

• Bacterial defense mechanism against foreign 
DNA and viruses 
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CRISPR 
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CRISPR 
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CRISPR 

Applications 
Knockout 
Knock-in 
Knockdown 
Lineage tracing 

 
Advantages 

Easy to construct 
Relatively economic 
Fast 

 
Disadvantages 

Off-target targeting 
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CRISPR in C. elegans 

Friedland A et al., Nat Methods 2013 
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CRISPR in C. elegans 
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CRISPR in Drosophila 

Bassett A et al., Cell Rep 2013 
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CRISPR in Drosophila 

HRM analysis 
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CRISPR screen in Drosophila 

Meltzer H et al., Nat Comm 2019 
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Large-scale resource for tissue-specific CRISPR 
mutagenesis in Drosophila 

Port F et al., eLife 2020 
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Large-scale resource for tissue-specific CRISPR 
mutagenesis in Drosophila 

Port F et al., eLife 2020 
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Large-scale resource for tissue-specific CRISPR 
mutagenesis in Drosophila 

Port F et al., eLife 2020 

• Large-scale transgenic sgRNA library, - 
‘Heidelberg CRISPR Fly Design Library’ (short 
HD_CFD library).  

• 2622 plasmids and 1739 fly stocks targeting 
1513 unique genes.  

• Fly lines so far available for  
– 545/754 (72%) transcription factors,  

– 199/230 (87%) protein kinases and  

– 141/207 (68%) phosphatases 
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Large-scale resource for tissue-specific CRISPR 
mutagenesis in Drosophila 

Port F et al., eLife 2020 
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Large-scale resource for tissue-specific CRISPR 
mutagenesis in Drosophila 

Meltzer H et al., Nat Comm 2019 
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Tessadori F et al., DMM 2018 

CRISPR in Zebrafish 
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Irion U et al., Dev 2014 

CRISPR in Zebrafish 
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Off-target 

Hruscha A et al., Dev 2013 
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Sun Y et al., Genome Res 2020 

Large-scale CRISPR mutagenesis in zebrafish 
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Sun Y et al., Genome Res 2020 

Large-scale CRISPR mutagenesis in zebrafish 



68 
Ablain J et al., Dev Cell 2015 

Tissue-specific CRISPR in zebrafish 
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Tissue-specific CRISPR in zebrafish 

Ablain J et al., Dev Cell 2015 
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Flower PF et al., Dev 2014 

Axolotl 
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Flower PF et al., Dev 2014 

CRISPR in Axolotl 
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CRISPR in lineage analysis 

McKenna A & James Gagnon Dev 2019 

• Lineage tracing is the 
identification of all progeny of 
a single cell.  

• Lineage tracing is an essential 
tool for studying stem cell 
properties in adult tissues. 

• Provides a powerful means of 
understanding tissue 
development, homeostasis, 
and disease 
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CRISPR in lineage analysis 

McKenna A & James Gagnon Dev 2019 
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CRISPR in lineage analysis 

Raj B et al., Nat Biot 2018 
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CRISPR in lineage analysis 

Raj B et al., Nat Biot 2018 
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RNA perturbation 

RNA perturbation:  

Technique to disrupt or degrade target gene 
mRNA  

 

Major RNA perturbation techniques* 

• RNAi 

• Morpholino 

• CRISPRi 
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RNA interference (RNAi) 

Nobelprize.org 
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RNAi 
Applications 
• Knockdown 
 
Advantages 
• Easy to construct 
• Fast 
• Large-scale libraries exist (Drosophila and C. elegans) 
 
Disadvantages 
• Nonspecific 
• Variability in level of knockdown 
• Not every gene is susceptible to RNAi — some tissues 

are resistant and genes encoding proteins with long 
half-lives are hard to knock down effectively 
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RNAi 

Boutros M & Julie Ahringer Nat Rev, 2008 

How it is done? 

• Injection of dsRNA or 

• Soaking with dsRNA or 

• Feeding engineered bacterial strains to 
express dsRNA 
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RNAi 

Fire A et al., Nature, 1998 



81 

RNAi 

Fire A et al., Nature, 1998 
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Morpholino 

 
Gene-tools.com 
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Morpholino 

• 25-bp long 

• Antisense oligonucleotides 

• bind to target sequence within an RNA and inhibit 
RNA-interacting molecules 

• Block translation or splicing 

• Largely used in zebrafish 

• Outdated? (depends) 

 

 

 

 
 
Gene-tools.com 



84 
Nobelprize.org 

Applications 

• Knockdown 

 

Advantages 

• Efficient knockdown 

• Fast 

 

Disadvantages 

• Expensive 

• Nonspecific 

• Only at early stages (upto 3-dpf) 

Morpholino 

Morpholino 
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Morpholino 

 
Nasevicius A & Stephen Ekker Nat. Biot, 2000 

anti-GFP morpholino nacre morpholino 
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Splice-blocking morpholino 

 
Nasevicius A & Stephen Ekker Nat. Biot, 2000 
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CRISPR interference (CRISPRi) 

• Catalytically “dead” Cas9 + guide RNA 

 

 

 

Qi LS et al., Cell, 2013 
Larson MH et al., Nat. Prot. 2013 
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CRISPRi 

 
Heigwer F et al., Genetics. 2018 
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CRISPRi 

• CRISPR mutants can exhibit genetic 
compensation – other genes play a backup 
role 

• CRISPRi do not exhibit genetic compensation 

 

 

 

Qi LS et al., Cell, 2013 
Larson MH et al., Nat. Prot. 2013 
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CRISPRi in Drosophila 

Ghosh S et al., NAR. 2016 
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CRISPRi in Zebrafish 

Savage A M et al., Nat Comm. 2019 

Morpholino shows a vascular phenotype 
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CRISPRi in Zebrafish 

Savage A M et al., Nat Comm. 2019 

CRISPR mutants lack mRNA expression of targeted 
gene 



93 

CRISPRi in Zebrafish 

Savage A M et al., Nat Comm. 2019 
El-Brolosy MA et al., Nature 2019 

CRISPR mutants do not shows a vascular phenotype 

Genetic compensation 
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CRISPRi in Zebrafish 

Savage A M et al., Nat Comm. 2019 

Like morpholino, CRISPRi exhibits vascular 
phenotype 
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CRISPR in Danionella translucida 

Schulze L et al., Nat Methods 2018 
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Other genetic tools 
Gene expression tools 
• Tol2* 
• Gal4-UAS 
• Heat-shock system 
• Tetracycline-transactivator system 
 
Gene perturbation tools 
• Cre-Lox 
• FLP-FRT 
• … 
 
Applications 
• To generate transgenic animals 
• To label cell or tissue of interest  
• To conditionally induce gene expression or knockout gene 
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Genome integration of foreign DNA 

Chalfie et al., Science 1994 
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Genome integration of foreign DNA 

• Introduction of foreign DNA into zebrafish genome occurs at 
low percentage (approx. 25%).  

• Need for better techniques to efficiently introduce foreign DNA  

https://patentscope.wipo.int/ 

GloFish 



99 

Tol2 in zebrafish 

• Autonomous transposon 
from Medaka fish (Oryzias 
latipes) 

• Components: 

– Transposase enzyme 

– Tol2 cis sequence (150bp 
and 200bp) with 12bp 
terminal inverted repeats 

• Application: 

– Spatial expression of 
transgene 

 

 

 

 
Koichi Kawakami Genome Biology, 2007 
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Tol2 in zebrafish 

 
Poeschla M & Valenzano DR J. Expt. Biol, 2020 
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Tol2 in Zebrafish 

Kwan KM Dev Dyn, 2007 
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Tol2 in Zebrafish 

Koichi Kawakami Genome Biology, 2007 
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Tol2 in Zebrafish 

Kwan KM Dev Dyn, 2007 
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Tol2 in Zebrafish 

Kwan KM Dev Dyn, 2007 
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Tol2 in Zebrafish 

Koichi Kawakami Genome Biology, 2007 

• Using specific promoters, it is possible to achieve 
spatially restricted gene expression  

• Allows spatial expression of transgene 
• flk promoter – vasculature 
• oxt promoter – oxytocin neurons 
• cmlc2 promoter - heart 

• In combination with other techniques, allows 
temporal control of transgene 
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Tol2 in Zebrafish 

www.gesundheitsindustrie-bw.de/ 

Tg(cmlc2:GFP) 
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Tol2 in Zebrafish 

El-Rass S et al., Biol. Open 2017 

pdgfra -/- 
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Tol2 in Zebrafish 

Ni R & Luo L FENS openbio 2018 

Tg(kdrl:EGFP) 
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Tol2 in Zebrafish 
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Tol2 in Danionella translucida 

Schulze L et al., Nat Methods 2018 
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Gal4-UAS system 

• Yeast Gal4 – transcriptional activator 

• UAS -  Gal4 responsive Upstream Activator 
Sequence 
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Gal4-UAS system 

Advantage:  

• Allows spatially restricted expression of 
transgene 

• 1000s of Drosophila GAL4 lines exist 

 

Drawback: 

Only spatially control and not temporal control 
of gene expression*  
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oxytocin tRFP 

tRFP 

Wircer E et al., eLife, 2017 

Gal4-UAS to label single neurons  
in zebrafish brain 



114 

Gal4-ERT-UAS system 

Advantage:  

• Allows spatially and temporal control in 
expression of transgene 

 

Advantage:  

• Allows spatially and temporal control of 
transgene expression 

Akerberg AA et al., PLoS One, 2014 
Gerety SS et al., Dev. 2013 
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Heat-shock system 

Stoick-Cooper CL et al., Dev, 2007 

Applications 
• Temporal control of transgene expression 
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Heat-shock system 

McGuire SE et al., Trends in Genet. 2004 

Drawbacks: 
• heat-shock promoters produce a low level of basal 

transcription even under non-heat-shock conditions.  
• Phenotypic effects can be produced with the expression 

of certain genes, such as toxin genes, even without an 
elevation in temperature.  

• Heat shock procedure can itself produce undesired 
effects on the animals depending on the timing of the 
heat shock and the inducing temperature.  

• Transgene expression is induced in essentially all cells in 
the organism,  
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Cre-Lox system 

• The Cre-Lox system is a site-specific 
recombination method.  

• Derived from bacteriophage P1. 

• Cre recombinase recognizes LoxP sites and 
depending upon LoxP orientation, it can create 
inversions or deletions or translocations 

Applications 

• Generate conditional knockouts 

• spatial and temporal control (combination with 
heatshock or tamoxifen) of gene expression 

• Useful to study genes whose knockouts are lethal 
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Cre-Lox system 
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Cre-Lox system 

• The gene flanked by LoxP sites is called a floxed gene 
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Cre-Lox system in zebrafish 

Burg L et al., PLoS Genet. 2018 
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Inducible Cre-ER system 

Kim H et al., Lab Anim Res. 2018 
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Inducible Cre-ER system in zebrafish 

Burg L et al., PLoS Genet. 2018 
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Cre-Lox in Brainbow zebrafish 

Lichtman et al. (2008)  
Pan et al. (2011). 
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Cre-Lox in zebrabow zebrafish 

 
Pan et al. Dev (2013). 
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FLP-FRT system 

• Derived from yeast 2mm plasmid  

• Involves the recombination of sequences 
between short flippase recognition target 
(FRT) sites by the recombinase flippase (Flp) 
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FLP-FRT system 
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FLP-FRT system in Drosophila 

w1118/Y  
 
 
 
 

w1118/Y;  
P[>whs>]/+  

w1118/Y;  
P[>whs>]/ 
P[>whs>]  

Golic KG & Lindquist S Cell. 1989 
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Lessons from mice studies 

• Majority of CRE strains exhibit some degree of 
unreported recombinase activity.  

• Strains exhibit  

– frequent mosaicism,  

– inconsistent deletion activity and  

– parent-of-origin effects.  

• It is necessary to characterize CRE strains 
robustly. 

Heffner CS et al., Nat Comm. 2013 
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https://sci-flies.com/ 


