

Genetic strategies of generating animal models: Non-mammalian models

dr Savani Anbalagan

www.amu.edu.pl

Krogh Principle

"for such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied."

Sydney Brenner

"choosing the right organism for one's research is as important as finding the right problems to work on"

What is an animal model system?

- non-human species that are studied in order to understand a range of biological phenomena
- with the hope that data, models and theories generated will be applicable to other organisms

Essential characteristics of an animal model organism

- An appropriate model organism for research question
- Easy to rear and work with
- Availability of genome sequence and gene expression profile
- Ability to introduce genetic material
- Ability to develop transgenic animals
- Ability to perform gene knock-down and knock-out
- Ability to perform targeted mutagenesis

Modified from Matthews BJ & Vosshall LB *JEB*, 2020

Example of non-mammalian animal models

Harpegnathos saltator

Drosophila melanogaster

Caenorhabditis elegans

Xenopus laevis

Nothobranchius furzeri

Ambystoma mexicanum

Lesson for human biology from flies..

https://droso4schools.wordpress.com/why-fly/

Comparison of research models

	2D cell culture	C.eleaans	D. melanoaaster	D. rerio	M. musculus	PDX	Human
Ease of establishing system		✓	✓	1	 Image: A second s	1	✓
Ease of maintenance	1	1	1	1	1	1	1
Recapitulation of developmental biology	×	1	\checkmark	1	\checkmark	×	~
Duration of experiments	1	1	1	1	1	1	1
Genetic manipulation	1	1	1	1	1	×	1
Genome-wide screening	1	1	1	1	×	×	1
Physiological complexity	X	1	1	1	1	1	1
Relative cost	1	1	1	1	1	1	1
Recapitulation of human physiology	1	1	1	1	1	\checkmark	1
	✓ Bes	t 🗸 Good	I 🗸 Partly suitat	ole 🗡 Not suit	able		

• • • • • • •

Genetic strategies

- Random mutagenesis
- Targeted genome engineering tools
- RNA perturbation tools*
- Gene expression systems

Random mutagenesis

Types

- Radiation-based
 - X-ray
 - Ultraviolet
 - Gamma-ray
- Chemical-based
 - EMS
 - ENU
- Insertional mutagenesis
 - P-element
 - Tol2-based
 - Retrovirus

Radiation and Chemical-based mutagenesis

Applications

Gene perturbation

Advantage

• Uniformly saturate the genome with mutations

Disadvantage

- Need to identify the mutated gene using traditional techniques is labor-intensive and time consuming
- However, with whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains,
- but determining which mutations are causative among thousands of polymorphisms remains challenging.

Auerbach C. *Chemical mutagenesis* 1973 Haelterman NA et al., *Genome Res* 2014

Random mutagenesis

- In 1920s, Hermann Muller's experiment demonstrated that exposure to X-rays, can cause genetic mutations
- Muller exposed Drosophila to x-rays, mated the flies, and observed the number of mutant phenotypes in the offspring.
- Muller's experiments with X-rays established that Xrays mutated genes and that egg and sperm cells are especially susceptible to such genetic mutations.

1946 Nobel Prize

Hermann Joseph Muller

for the discovery of the production of mutations by means of X-ray irradiation

https://tinyurl.com/mullerexpt

Chemical mutagenesis

- Involves treatment of animals or reproductive cells with alkylating agents
 - N-Ethyl-N-nitrosourea (ENU)
 - Ethyl methanesulfonate (EMS)
- Screen for particular phenotype

Chemical mutagenesis cause DNA base traversions

Chemical mutagenesis in C. elegans

- Treat worms with EMS (0.05M) for 4 hours
- Screen offsprings

FIGURE 1.—Photomicrographs of C. elegans and some of its mutants. a: wild type, b: dumpy (dyp-1), c: small (sma-2), d: long (lon-1). The scale is 0.1 mm.

Chemical mutagenesis in *C. elegans*

T in here a		D (Number of isolates		
group	Gene	Gene mutant M S	s	Comments	
I	bli-3	E767	1		
	unc-35	E259	1		
	unc-56	E403	2		
	unc-11	E47	2		
	unc-40	E271	1		
	unc-57	E406	2		
	unc-38	E264	4	1	Tetramisole-resistant
	unc-63	E384	2		Tetramisole-resistant
	dpy-5	E61	2		
	dpy-14	E188	1		Larvae abnormal
	unc-14	E57	5	1	Small, paralyzed body
	unc-37	E262	1		
	unc-15	E73	1		Paralyzed; defect in body muscle cells
	unc-55	E402	2		
	unc-13	E51	17		Paralyzed; pharyngeal movement irregular
	unc-21	E330	1		
	unc-29	E193	2		Tetramisole-resistant
	unc-54	E190	5		Paralyzed: defect in body muscle cells
	unc-59	E261	1		

Sydney Brenner Genetics, 1994

Chemical mutagenesis in zebrafish

Mullins M et al., Curr Biol, 1994

Zebrafish mutation project

Kettleborough RN et al., Nature, 2013

Chemical mutagenesis in zebrafish

- Zebrafish Mutation Project at the Wellcome Sanger Institute, UK generated a mutant archive of over 40,000 alleles
- Covering 60% of zebrafish protein-coding genes.

Insertional mutagenesis

Types

- P-element transposon-based
- Retrovirus-based

Applications

Knockout

Advantage

Relative ease of identifying the mutated genes *

P element in Drosophila

- P elements are cut-and-paste transposons in the genomes of Drosophila
- The transposition of these P elements is catalyzed by an enzyme, the transposase
- This enzyme is naturally produced only in germline tissues.
- 1000s of P-element fly lines have been cataloged with their chromosomal location (FlyBase Consortium, 2002).

Adams M & Sekelsky J Nat Rev, 2002

P-element in Drosophila

P-element in Drosophila

Tol2 in zebrafish

Poeschla M & Valenzano DR J. Expt. Biol, 2020

Tol2-mediated Gene trap

Tol2-mediated Gene trap

A SAG2	SAG4A	SAG4B	SAG10	SAG11
SAG14	SAG15	SAG18	SAG56	SAG86
SAG92	SAGm1	SAGm11A	SAGm11B	SAGm14
SAGm17A	SAGm17C	SAGm18A	SAGm18B	SAGm18C
SAGp11	SAGp17	SAGp22B	SAGp47A	SAGp47B
SAGp49A	SAGp49B	SAGp53A	SAGp53B	SAGp57
SAG20	SAGp22A	SAGm17B	SAGp4	SAGp33

Kawakami K et al., Dev Cell, 2004

- Murine leukaemia virus/vesicular stomatitis virus
- Can integrate into many different sites in the chromosome

Amsterdam A et al., Genes Dev, 1999

Amsterdam A et al., Genes Dev, 1999

- Advantage:
 - insertion provides a molecular tag that can be used to identify the disrupted gene.

Inverse PCR to identify disrupted gene

Amsterdam A & Hopkins N Methods Cell Bio, 2004

Chemical vs instertional mutagenesis in zebrafish

Steps	Chemical mutagenesis	Insertional mutagenesis
Founders population	Expose five-to-ten male fish to ENU	Inject virus into embryos; raise ~1200 founders capable of transmitting ~30 000 inserts Time: this should take two people two months
Generate F1	Raise 250-300 F1 fish from outcrossed founders	Raise ~15 000 F1 fish from 500 founder crosses; select 1500 F1 fish that each have five-to-ten inserts Time: this should take two people one year
Generate F2	Raise 100 F2 families from F1 crosses	Raise 700 F2 families from F1 crosses
Screen F3	Screen 600 crosses (approximately six crosses per F2 family) Time: this should take four people one month	Screen 4200 crosses (approximately six crosses per F2 family) Time: this should take four people seven months
Cloning mutated gene	One person will need six-to-twelve months per mutant; 50-100 researcher-years for 100 mutants	One person will need three-to-four weeks per mutant (can do many simultaneously); one researcher-year for 100 mutants

Targeted genome editing

- ZFN
- TALEN "Class of programmable nuclease"
- CRISPR

How it is done?

- Inject into embryos or eggs
 - ZFN mRNA or
 - TALEN mRNA or
 - CRISPR Cas9 mRNA or protein and gRNA targeting specific DNA sequence

Targeted genome editing

 Genome editing with programmable nucleases depends on cellular responses to a targeted double-strand break (DSB).

Chandrasegaran S & Carroll D Jour. Mol. Biol., 2016

How to detect mutation?

- RFLP (Restriction fragment length polymorphism)
- HRM
- T7 endonuclease assay
- DNA sequencing

Restriction fragment length polymorphism

High resolution melting analysis

Zinc-finger nuclease

- Zinc finger small protein structural motif
- most abundant DNA recognition domain in eukarya

Chandrasegaran S & Carroll D Jour. Mol. Biol., 2016

Zinc-finger nuclease

- 3 and 6 individual zinc finger motifs and bind target sites ranging from 9 basepairs to 18 basepairs in length
- Engineered zinc finger arrays are fused to a DNA cleavage domain of Fokl nuclease to generate zinc finger nucleases.

Palpant NJ & Dudzinski D *Gene Therapy,* 2012 Urnov FD et al., *Nat Rev* 2010

ZFN in Drosophila

ZFN in Drosophila

Bibikova M et al., Genetics 2002

Zinc-finger nuclease in zebrafish

d Deletions
Wild type GGAGATACACACCTTCAGCATGTTGGTGGGACACT
GGAGATACACACCTTGTTGGTGGGACACT
GGAGATACACACCTTGGTTGGTGGGACACT
GGAGATACACACCTACACACCTTGGGACACT
Insertions
Wild type GAGATACACACCTTCAGCATGTTGGTGGGACA
GAGATACACACCTTCAGCATGCATGTTGGTGGGACA
Wild type GAGATACACACCTTCAGCATGTTGGTGGGAC
GAGATACACACCTTGCTTGTTGGTGGGACAGTTGGTGGGAC

RFLP assay

Zinc-finger nuclease in zebrafish

Meng X et al., Nat. Biot, 2008

TALEN

- Transcription activator-like (TAL) effector nucleases (TALEN)
- made by fusing a TAL effector DNA-binding domain to a DNA cleavage domain (nuclease)
- TAL effector?
 - proteins secreted by Xanthomonas bacteria when they infect plants
 - here they enter the nucleus, bind to effector-specific promoter sequences, and activate the expression of individual plant genes, which can either benefit the bacterium or trigger host defenses

TALEN

TALEN

Applications

Knock-out Knock-in

Advantages

Target almost any region Relatively more precise

Disadvantages

Relatively complex to construct

TALEN in zebrafish

	cdh5				
	Left Targ	et Sequence	Spacer	Right Target Sequence	
	5' - <u>CTCCTCA</u>	ACATACATACT GG <i>I</i>	AGAGTTA <mark>GTTGAC</mark> A	I AAGATGAATCATTTGT	- 3'
	GAGGAGT	IGTATGTATGACCI	ICTCAAT <mark>CAACTG</mark> I	TTCTACTTAGTAAACA	
			Hincll		
d	cdh5 GoldyTAL	EN targeted somat	tic mutations		<u>n=10</u>
	5 – CTCCTCA	ACATACATACTGG	AGAGTTAGTTGACA	AAGATGAATCATTTGT	- 3′(WT)
	5'- CTCCTCA	ACATACATACTGGA	AGAG:TA::TGACA	AAGATGAATCATTTGT	- 3'
	5'- CTCCTCA	ACATACATACTGGA	AGAGT A T GTACAAA	AGATGAATCATTTGAC	- 3'
	5'- CTCCTCA	ACATACATACTGGA	AGAG::::::::A	AAGATGAATCATTTGT	- 3'
	5'- CTCCTCA	ACATACATACTGGA	AGAG::::::ACA	AAGATGAATCATTTGT	- 3′(2x)
	5'- CTCCTCA	ACATACATACTGGA	AGAG::A::TGACA	AAGATGAATCATTTGT	- 3'
	5'- CTCCTCA	ACATACATACTGGA	AGAGTTAGTTGACA	AAGATGAATCATTTGT	- 3'
	5'- CTCCTCA	ACATACATACTGGA	A:::::::::GACA	AAGATGAATCATTTGT	- 3'
	5'- CTCCTCA	ACATACATACTGG	AGA:::::::GACA	AAGATGAATCATTTGT	- 3'
	5'- CTCCTCA	ACATACATACT::	::::::::::GACA	AAGATGAATCATTTGT	- 3'
			Z		
			ALE		
		der	1 Idy1		
			Gol		
		pb	3		

Bedell VM et al., Nature 2012

- clustered regularly interspaced short palindromic repeats (CRISPR)
- Bacterial defense mechanism against foreign DNA and viruses

Applications

Knockout Knock-in Knockdown Lineage tracing

Advantages

Easy to construct Relatively economic Fast

Disadvantages

Off-target targeting

CRISPR in *C. elegans*

CRISPR in C. elegans

Mutations in Y61A9LA.1

TGGATGTGTAGTCAATTCGGCAGGAAGCATACTGCCCTG Wild Type

TGGATGTGTA-----TTCGGCAGGAAGCATACTGCCCTG-5TGGATGTGTAGTCTGGATGTGTAGTCTGGATGTGTAGTC----TCGGCAGGAAGCATACTGCCCTG-4TGGATGTGTAGTCAttTTCGGCAGGAAGCATACTGCCCTG+1 (-1, +2)TGGATGTGTAGTAGTATATTCGGCAGGAAGCATACTGCCCTG+1 (-2, +3)TGGATGTGTAGTTGGATGTGTAGTGGATGTGTAGTCgatggatgtgtagtcAATTCGGCAGGAAGCATACTGCCCTG-13TGGATGTGTAGTCgatggatgtgtagtcAATTCGGCAGGAAGCATACTGCCCTG-1TGGATGTGTAGTCA-TTCGGCAGGAAGCATACTGCCCTGTGGATGTGTAGTCTCGGCAGGAAGCATACTGCCCTGTGGATGTGTAGTC---TCGGCAGGAAGCATACTGCCCTGTGGATGTGTAGT----TCGGCAGGAAGCATACTGCCCTG-4TGGATGTGTAGTA----TGGATGTGTAA----TTCGGCAGGAAGCATACTGCCCTG-5-5

CRISPR in Drosophila

Bassett A et al., Cell Rep 2013

CRISPR in Drosophila

CRISPR screen in Drosophila

- Large-scale transgenic sgRNA library, -'Heidelberg CRISPR Fly Design Library' (short HD_CFD library).
- 2622 plasmids and 1739 fly stocks targeting 1513 unique genes.
- Fly lines so far available for
 - 545/754 (72%) transcription factors,
 - 199/230 (87%) protein kinases and
 - 141/207 (68%) phosphatases

Port F et al., eLife 2020

Meltzer H et al., Nat Comm 2019

CRISPR in Zebrafish

CRISPR in Zebrafish

Off-target

target site	gRNA motif (mismatches in red)	PAM	reads total	reads indel	% indel
C9t3 target site	GGACAGGCTGAAGACATGAT	AGG	118682	59891	50.5
off-target site 1	CGCTC GGCTGAAGACATGAT	CGG	89957	1001	1.1
off-target site 2	TAGATGCCTGAAGACATGAT	TGG	86563	1915	2.2
off-target site 3	TAGATGCCTGAAGACATGAT	TGG	440259	10336	2.3
off-target site 4	TAGCTGCCTGAAGACATGAT	TGG	68905	1729	2.5

Large-scale CRISPR mutagenesis in zebrafish

Table 1. Selection of target genes on zebrafish Chromosome 1

Gene classification	Gene counts ^a	Selected for targeting
Pseudogene	7	0
Coding gene	1202	1202
Noncoding gene: housekeeping	99	21 ^b
Noncoding gene: miRNA	31	31
Noncoding gene: lincRNA	6	6
Noncoding gene: other Sum	73 1418	73 1333

^aBased on Zv9 release 60, 2013-01.

^bSeventy-eight rRNA genes were excluded from our project.

Large-scale CRISPR mutagenesis in zebrafish

			Chinese English
CZ BC	Search CZRC	Q GO	
	Search CZRC for Fish Lines	Q GO	Login Register
CHINA ZEBRAHSH RESOURCE CENTER			

Home | About CZRC | Resources | ZKO Project | Technical Service | Make Submissions | View Information | Contact Us

lf you need ZK	O Alleles,click Order ZKO ,a	ny other problem please contact luyuanpan@ihb.ac.cn	
Search: ZKO number:		Ensembl ID: Gene name:	Search
ZKO number	Ensembl ID	Gene name	Availability
ZKO1	ENSDARG00000076045	zgc:163025	2013/12/24
ZKO2	ENSDARG0000034862	f7	2013/12/24
ZKO6	ENSDARG00000013802	pcid2	2013/12/24
ZKO8	ENSDARG00000041589	adprhl1	2013/12/17
ZKO9	ENSDARG00000041592	dcun1d2	2013/12/24
ZKO10	ENSDARG00000075108	tmco3	2013/12/24
ZKO12	ENSDARG00000058803	grk1a	2013/12/24
ZKO13	ENSDARG0000063385	cenpe	2013/12/18
ZKO14	ENSDARG0000007804	gas6	2013/12/24
ZKO16	ENSDARG0000063371	rasa3	2013/12/24
	,	First Prev 1 2 3 4 5 6 7 8 9 10 Next Last Go 1 🗸	
Links: 国家淡	水生物资源库 EENDB ZAP	ZHA, US AZPF TZCF ZOMB NBRP-Zebr EZRC ZIRC ZFIN	More
© China Zebra	afish Resource Center. All righ	ts reserved.	

CZRC Home | Guidelines for Ordering | Technical Service | FAQ | Contact Us Web Support: Taizhou Xing-Ao Network Technology Co., Ltd.

Sun Y et al., Genome Res 2020

Tissue-specific CRISPR in zebrafish

Tissue-specific CRISPR in zebrafish

36/42

23/38

Ablain J et al., Dev Cell 2015

31/31

27/35

Axolotl

CRISPR in Axolotl

D brachyury, whole larva, day 21, 20 of 20 sequences mutant

ACGCTTACCCCCATAGCTGTTTCTCAGTCAGGAGGAATGCCTTCCGGTTTGGGGGTCCCAGTAC	WT		Х	0
ACGCTTACCCCCATAGCTGTTTCTCAGTCAGGAGGTCCCAGTAC	(-19)			
ACGCTTACCCCCATAGCTGTTTCTCAGTCAGTTTGGGGGTCCCAGTAC	(-16)		Х	6
ACGCTTACCCCCATAGCTGTTTCTCAGTCAGCCAGTTTGGGGGTCCCAGTAC	(-15,	+3)		
ACGCTTACCCCCATAGCTGTTTCTCAGTCAGGAGGAATGCCTTGGGGGTCCCAGTAC	(-7)			
ACGCTTACCCCCATAGCTGTTTCTCAGTCAGGAGGAATGCCTTTGGGGGTCCCAGTAC	(-6)			
ACGCTTACCCCCATAGCTGTTTCTCAGTCAGGAGGAATGCCTTCCGGGGTCCCAGTAC	(-5)		Х	3
ACGCTTACCCCCATAGCTGTTTCTCAGTCAGGAGGAATGCCTTCCGGGGGGTCCCAGTAC	(-3)		Х	7

CRISPR in lineage analysis

- Lineage tracing is the identification of all progeny of a single cell.
- Lineage tracing is an essential tool for studying stem cell properties in adult tissues.
- Provides a powerful means of understanding tissue development, homeostasis, and disease

McKenna A & James Gagnon Dev 2019

CRISPR in lineage analysis

Cell type diversity

Raj B et al., Nat Biot 2018

CRISPR in lineage analysis

Raj B et al., Nat Biot 2018

RNA perturbation

RNA perturbation:

Technique to disrupt or degrade target gene mRNA

Major RNA perturbation techniques*

- RNAi
- Morpholino
- CRISPRi

RNA interference (RNAi)

Nobelprize.org

Applications

Knockdown

Advantages

- Easy to construct
- Fast
- Large-scale libraries exist (Drosophila and C. elegans)

Disadvantages

- Nonspecific
- Variability in level of knockdown
- Not every gene is susceptible to RNAi some tissues are resistant and genes encoding proteins with long half-lives are hard to knock down effectively

How it is done?

- Injection of dsRNA or
- Soaking with dsRNA or
- Feeding engineered bacterial strains to express dsRNA

Table 1	Table 1 Effects of sense, antisense and mixed RNAs on progeny of injected animals							
Gene	segment	Size (kilobases)	Injected RNA	F, phenotype				
unc-22				unc-22-null mutants: strong twitchers ⁵⁸				
unc22A	* Exon 21-22	742	Sense Antisense Sense + antisense	Wild type Wild type Strong twitchers (100%)				
unc22B	Exon 27	1,033	Sense Antisense Sense + antisense	Wild type Wild type Strong twitchers (100%)				
unc220	Exon 21-221	785	Sense + antisense	Strong twitchers (100%)				

Gene-tools.com

- 25-bp long
- Antisense oligonucleotides
- bind to target sequence within an RNA and inhibit RNA-interacting molecules
- Block translation or splicing
- Largely used in zebrafish
- Outdated? (depends)

Applications

Knockdown

Advantages

- Efficient knockdown
- Fast

Disadvantages

- Expensive
- Nonspecific
- Only at early stages (upto 3-dpf)

GFP activity (% uninjected cont 80 60 g 40 20 ĸ m 0ng 9ng n E-line wt

anti-GFP morpholino

Control MO 2 dose (ng) GFP protein 0 ng 1.5 ng 4.5 ng 9ng GFP mRNA

loading control

nacre morpholino

Nasevicius A & Stephen Ekker Nat. Biot, 2000

Splice-blocking morpholino

CRISPR interference (CRISPRi)

• Catalytically "dead" Cas9 + guide RNA

Qi LS et al., *Cell*, 2013 Larson MH et al., *Nat. Prot.* 2013

Heigwer F et al., Genetics. 2018

CRISPRi

- CRISPR mutants can exhibit genetic compensation – other genes play a backup role
- CRISPRi do not exhibit genetic compensation

CRISPRi in Drosophila

Ghosh S et al., NAR. 2016

Morpholino shows a vascular phenotype

Savage A M et al., Nat Comm. 2019

CRISPR mutants lack mRNA expression of targeted gene

CRISPR mutants do not shows a vascular phenotype

Genetic compensation

Savage A M et al., *Nat Comm.* 2019 El-Brolosy MA et al., *Nature* 2019

Like morpholino, CRISPRi exhibits vascular phenotype

Savage A M et al., Nat Comm. 2019

CRISPR in *Danionella translucida*

f WT, 3 dpf

gRNAs 1 + 2 + CRISPR-Cas9, 3 dpf

gRNAs 1 + 2 + CRISPR-Cas9, 3 dpf

500 µm

Schulze L et al., Nat Methods 2018

Other genetic tools

Gene expression tools

- Tol2*
- Gal4-UAS
- Heat-shock system
- Tetracycline-transactivator system

Gene perturbation tools

- Cre-Lox
- FLP-FRT
- •

Applications

- To generate transgenic animals
- To label cell or tissue of interest
- To conditionally induce gene expression or knockout gene

Genome integration of foreign DNA

Fig. 3. Expression of GFP in a first-stage C. elegans larva. Two touch receptor neurons (ALMR and PLMR) are labeled at their strongly fluorescing cell bodies. Processes can be seen projecting from both of these cell bodies. Halos produced from the out-offocus homologs of these cells on the other side of the animal are indicated by arrowheads. The thick arrow points to the nerve ring branch from the ALMR cell (out of focus); thin arrows point to weakly fluorescing cell bodies. The background fluorescence is the result of the animal's autofluorescence.

Prize share: 1/3

U. © The Nobel Foundation. Photo: U. Montan Martin Chalfie Prize share: 1/3

© The Nobel Foundation. Photo: U. Montan Roger Y. Tsien Prize share: 1/3

The Nobel Prize in Chemistry 2008 was awarded jointly to Osamu Shimomura, Martin Chalfie and Roger Y. Tsien "for the discovery and development of the green fluorescent protein, GFP."

Chalfie et al., Science 1994

Genome integration of foreign DNA

- Introduction of foreign DNA into zebrafish genome occurs at low percentage (approx. 25%).
- Need for better techniques to efficiently introduce foreign DNA

https://patentscope.wipo.int/

- Autonomous transposon from Medaka fish (*Oryzias latipes*)
- Components:
 - Transposase enzyme
 - Tol2 *cis* sequence (150bp and 200bp) with 12bp terminal inverted repeats
- Application:
 - Spatial expression of transgene

Poeschla M & Valenzano DR J. Expt. Biol, 2020

Koichi Kawakami Genome Biology, 2007

attL1 Middle element attL2

pME -

Kwan KM Dev Dyn, 2007

Name	Description	Test	Figur
5' entry clones			
p5E-bactin2	5.3-kb beta-actin promoter (ubiquitous)	F0, F1	2
p5E-h2afx	1-kb H2A-X promoter (quasi-ubiquitous)	FO	2b
p5E-CMV/SP6	1-kb CMV/SP6 cassette from pCS2+	FO	
p5E-hsp70	1.5-kb hsp70 promoter for heat-shock induction	F0, F1	4
p5E-UAS	10x UAS element and basal promoter for Gal4 response	FO	
p5E-MCS	Multicloning site from pBluescript	FO	
p5E-Fse-Asc	Restriction sites for 8-cutters FseI and AscI	FO	
Middle entry clones			
pME-EGFP	EGFP	FO	
pME-EGFPCAAX	Membrane-localized (prenylated) EGFP; fused to the last 21 amino acids of H-ras	F0, F1	3
pME-nlsEGFP	Nuclear-localized EGFP	FO	2f
pME-mCherry	Monomeric red fluorophore mCherry	F0, F1	2c
pME-mCherryCAAX	Membrane-localized (prenylated) mCherry	FO	2e, 4
pME-nlsmCherry	Nuclear-localized mCherry	FO	2abd
pME-H2AmCherry	mCherry fused to the zebrafish histone H2A.F/Z	F0, F1	
pME-Gal4VP16	Gal4 DNA binding domain fused to the VP16 transactivation domain	FO	
3' entry clones			
p3E-polyA	SV40 late poly A signal sequence from pCS2+	F0, F1	3, 4
p3E-MTpA	6x myc tag for protein fusions, plus SV40 late polyA		
p3E-EGFPpA	EGFP for protein fusions, plus SV40 late polyA	F0, F1	
p3E-mCherrypA	mCherry for protein fusions, plus SV40 late polyA	F0, F1	
p3E-IRES-EGFPpA	EMCV IRES driving EGFP plus SV40 late polyA	FO	2d
p3E-IRES-EGFPCAAXpA	EMCV IRES driving EGFPCAAX (prenylated EGFP) plus SV40 late polyA	F0, F1	2abcf
p3E-IRES-nlsEGFPpA	EMCV IRES driving nlsEGFP (nuclear EGFP) plus SV40 late polyA	FO	2e
Destination vectors			
pDestTol2pA/pDestTol2pA2	attR4-R3 gate with SV40 polyA flanked by Tol2 inverted repeats	F0, F1	3
pDestTol2CG/pDestTol2CG2	pDestTol2pA/pDestTol2pA2 with cmlc2:EGFP transgenesis marker	F0, F1	4
Other			
pCS2FA-transposase	For in vitro transcription of capped Tol2 transposase RNA		3, 4

^aEGFP, enhanced green fluorescent protein; F0, yields appropriate expression in transient transgenics; F1, yields appropriate expression in stable transgenics.

- Using specific promoters, it is possible to achieve spatially restricted gene expression
- Allows spatial expression of transgene
 - *flk* promoter vasculature
 - *oxt* promoter oxytocin neurons
 - *cmlc2* promoter heart
- In combination with other techniques, allows temporal control of transgene

Tol2 in Zebrafish

Tol2 in Danionella translucida

Schulze L et al., Nat Methods 2018

Gal4-UAS system

- Yeast Gal4 transcriptional activator
- UAS Gal4 responsive Upstream Activator Sequence

Gal4-UAS system

Advantage:

- Allows spatially restricted expression of transgene
- 1000s of Drosophila GAL4 lines exist

Drawback:

Only spatially control and not temporal control of gene expression*

Gal4-UAS to label single neurons in zebrafish brain

Wircer E et al., eLife, 2017

Gal4-ERT-UAS system

Advantage:

 Allows spatially and temporal control of transgene expression

Akerberg AA *et al., PLoS One,* 2014 Gerety SS *et al., Dev.* 2013

Heat-shock system

Applications

Temporal control of transgene expression

Stoick-Cooper CL et al., Dev, 2007

Heat-shock system

Drawbacks:

- heat-shock promoters produce a low level of basal transcription even under non-heat-shock conditions.
- Phenotypic effects can be produced with the expression of certain genes, such as toxin genes, even without an elevation in temperature.
- Heat shock procedure can itself produce undesired effects on the animals depending on the timing of the heat shock and the inducing temperature.
- Transgene expression is induced in essentially all cells in the organism,

- The Cre-Lox system is a site-specific recombination method.
- Derived from bacteriophage P1.
- Cre recombinase recognizes LoxP sites and depending upon LoxP orientation, it can create inversions or deletions or translocations

Applications

- Generate conditional knockouts
- spatial and temporal control (combination with heatshock or tamoxifen) of gene expression
- Useful to study genes whose knockouts are lethal

- The Cre-Lox system is a site-specific recombination method.
- Derived from bacteriophage P1.
- Cre recombinase recognizes LoxP sites and depending upon LoxP orientation, it can create inversions or deletions or translocations

Applications

- Generate conditional knockouts
- spatial and temporal control (combination with heatshock or tamoxifen) of gene expression
- Useful to study genes whose knockouts are lethal

• The gene flanked by LoxP sites is called a floxed gene

Cre-Lox system in zebrafish

Burg L et al., PLoS Genet. 2018

Inducible Cre-ER system

Inducible Cre-ER system in zebrafish

Cre-Lox in Brainbow zebrafish

Lichtman *et al.* (2008) Pan *et al.* (2011).

Cre-Lox in zebrabow zebrafish

Pan et al. Dev (2013).

FLP-FRT system

- Derived from yeast $2\mu m$ plasmid
- Involves the recombination of sequences between short flippase recognition target (FRT) sites by the recombinase flippase (Flp)

FLP-FRT system

FLP-FRT system in Drosophila

Figure 2. Schematic Diagram of FLP and FRT Constructs

(A) $P[ry^+, hsFLP]$. The hsp70-FLP fusion gene (hsFLP) is diagramed. This was cloned into a P element vector which also carried ry^+ as a marker for germline transformation.

(B) $P(w^{hs})$. The FRT-flanked w^{hs} gene is diagramed. In both (A) and (B), the P element terminal inverted repeats are indicated by shaded arrowheads. The coordinates beneath each diagram indicate approximate distance in kilobase pairs from the leftmost P element end.

w1118/Y

w1118/Y; P[>w^{hs}>]/+ w1118/Y; P[>w^{hs}>]/ P[>w^{hs}>]

Lessons from mice studies

- Majority of CRE strains exhibit some degree of unreported recombinase activity.
- Strains exhibit
 - frequent mosaicism,
 - inconsistent deletion activity and
 - parent-of-origin effects.
- It is necessary to characterize CRE strains robustly.

https://sci-flies.com/

