Molecular Machines

Mikołaj Olejniczak

Molecular machines, which are involved in synthesis, maturation and decay of biological macromolecules

spliceosome

ribosome

exosome

proteasome

RNA structure is organized at three levels:

Primary structure is the sequence of nucleotides in polyribonucleotide chain

Secondary structure is stabilized by Watson-Crick pairs and is organized into structure motifs such as **helices**, **hairpins**, **bulges**, **internal loops**, *helix junctions*

Tertiary structure is formed by nucleotides located distantly in the sequence, such as **pseudoknots, base triples, A-minor motifs**

Complex RNA molecules contain multiple structure elements

RNA molecules form complex 3-dimensional structures

RNA properties essential for the formation of complex spatial structures **Purine or** pyrimidine Phosphate base 5' 4′ 0 Pentose Η)H

Nucleic acid chain is more flexible than that of a protein

RNA molecules contain post-transcriptional modifications

Modified bases in tRNA are essential for Its structure and for accurate decoding of mRNA

More than 70 types of noncanonical basepairs are known

RNA secondary structure motifs

Tertiary contacts in P4-P6 domain of group I intron

Two parallel helical regions stabilized by tertiary contacts

- 1. tetraloop/tetraloop-receptor
- 2. A-minor interactions

tetraloop/tetraloop-receptor

A-minor motif

coaxial stacking in 16S rRNA

Ribosome is a molecular machine, in which RNA is the peptide bond formation catalyst

Translation elongation cycle

A-minor interactions are essential for mRNA decoding

Aminoglycosides trigger conformational change at the decoding site

Puromycine mimics the 3' end of aa-tRNA and inhibits peptidyltransferase activity

Macrolides block the exit tunnel of the 50S subunit

Molecular mimicry:

Release factors (RFs), which recognize nonsense codons to terminate translation, have the shape of tRNA molecules

Youngman et al., Ann Rev Microbiol 2008