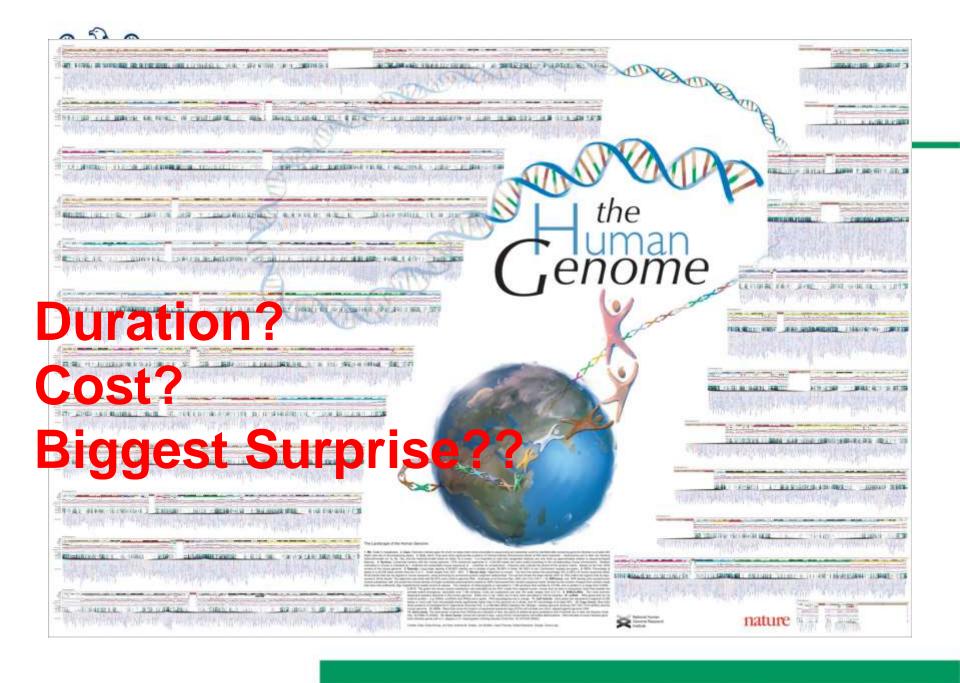



ADAM MICKIEWICZ UNIVERSITY IN POZNAŃ

Faculty of Biology

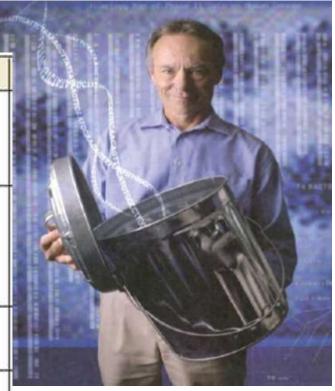
Genome Medicine



Personilized/Precision Medicine

Hans Bluyssen, 09-10-2019

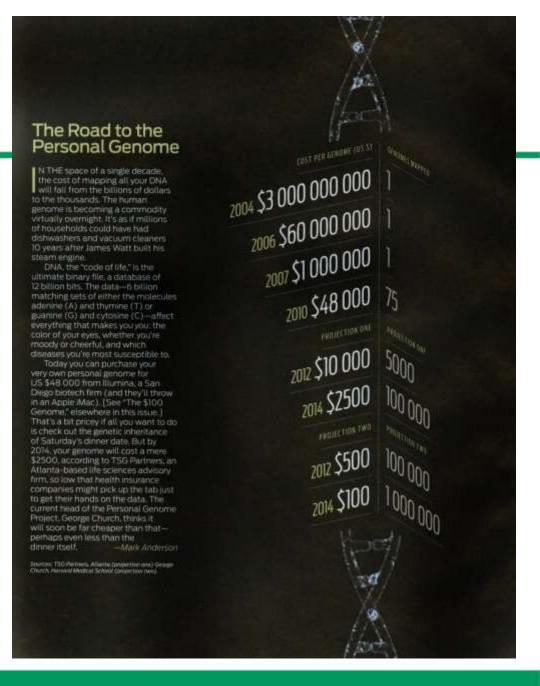
Post-genome sequencing "Functional Genomics"



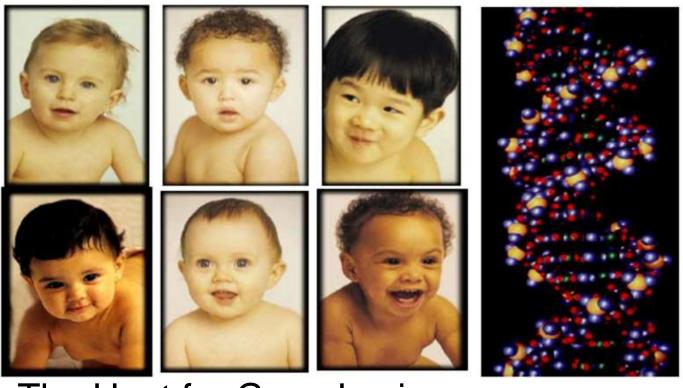
- -translate information to different levels
- -Understanding mechanisms of cell function + organism
- -Health care:
 food and health
 mechanism infectious disease
 origins of multifactorial disease
- -Medical diagnostics/prognostics
- -Pharmaceutical products/ therapeutics

The "Functional Genomics" Toolbox

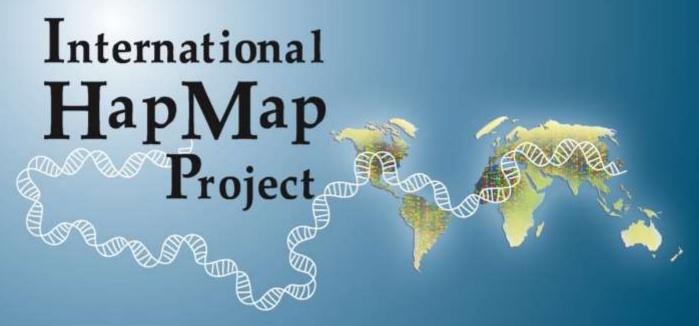
"-omics" approach	Generated information		
Human genome sequence (genomics)	Whole-genome sequence, SNPs, and CNVs (~10-15 million)		
Gene expression profiles (transcriptomics)	Microarrays and RNA sequencing (~25,000 transcripts) Transcription factor chromatin Interactions: ChIP-seq		
Proteome (proteomics)	Protein profiles of specific protein products		
Metabolome (metabolomics)	Metabolic profiles (~1,000–10,000 metabolites)		
Epigenomics	DNA Methylation		


(Chan & Ginsburg, 2011)

"Personal Genome"

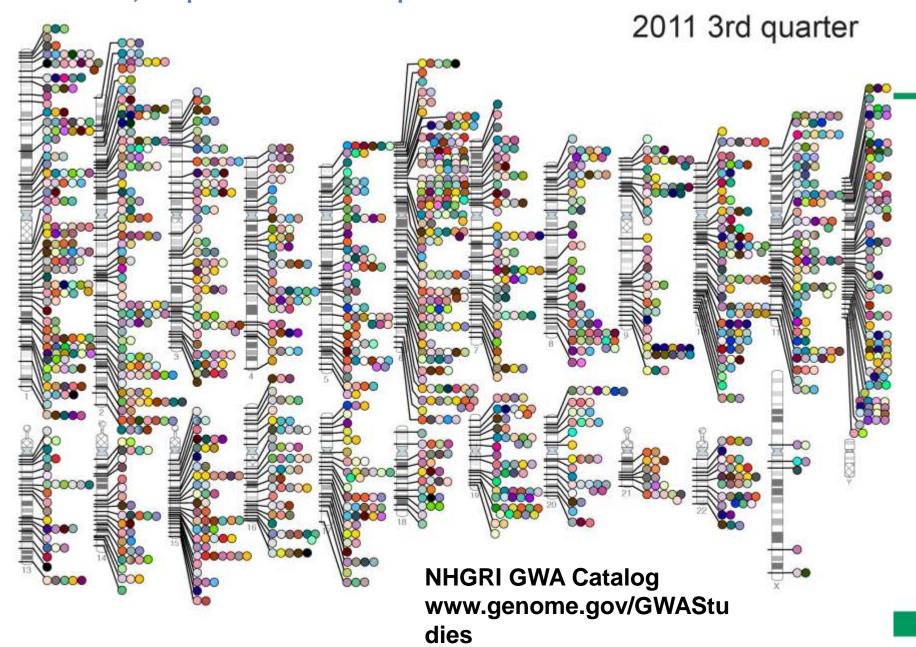


> 50 companies World-wide


Genomics: Single Nucleotide Polymorphisms

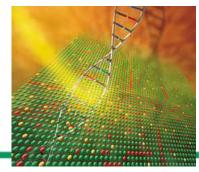
The Hunt for Gene Loci
Associated with
Complex Human Diseases

Genome wide variation!


www.hapmap.org

The HapMap is a catalog of common genetic variants that occur in human beings. It describes what these variants are, where they occur in our DNA, and how they are distributed among people within populations and among populations in different parts of the world.

Provides information that other researchers can use to link genetic variants to the risk for specific illnesses, which will lead to new methods of preventing, diagnosing, and treating disease.



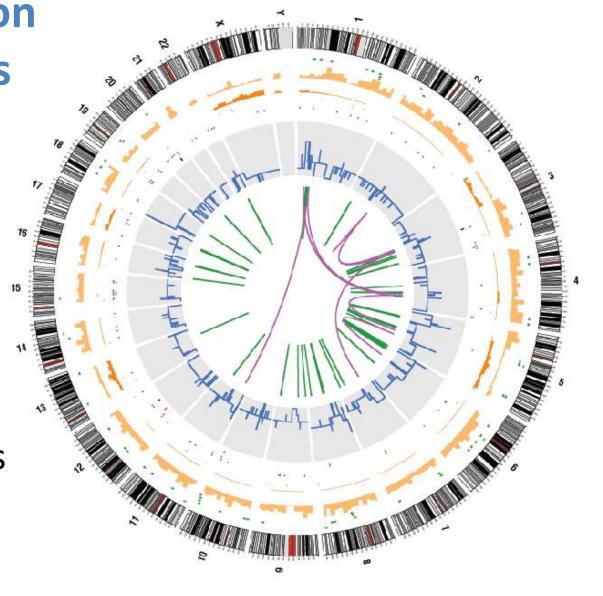
		→ 0	Coffee consumption	0	Hepatitis B vaccine response
	Abdominal aortic aneurysm		Cognitive function		Hepatocellular carcinoma
0	Acute lymphoblastic leukemia	0	Conduct disorder	0	Hirschsprung's disease
	Adhesion molecules	\longrightarrow	Colorectal cancer	0	HIV-1 control
	Adiponectin levels	0	Corneal thickness		Hodgkin's lymphoma
	Age-related macular degeneration	\rightarrow	Coronary disease	0	Homocysteine levels
0	AIDS progression	0	Cortical thickness		HPV seropositivity
0	Alcohol dependence		Creutzfeldt-Jakob disease		Hypospadias
	Alopecia areata	\longrightarrow	Crohn's disease		Idiopathic pulmonary fibrosis
\rightarrow	Alzheimer disease	0	Crohn's disease and celiac disease		IFN-related cytopeni
	Amyloid A levels		Cutaneous nevi		IgA levels
0	Amyotrophic lateral sclerosis		Cystic fibrosis severity	0	IgE levels
0	Angiotensin-converting enzyme activity		Dermatitis	->0	Inflammatory bowel disease
	Ankylosing spondylitis		DHEA-s levels		Insulin-like growth factors
	Arterial stiffness		Diabetic retinopathy	0	Intracranial aneurysm
	Asparagus anosmia		Dilated cardiomyopathy		Iris color
	Asthma		Drug-induced liver injury		Iron status markers
	Atherosclerosis in HIV		Drug-induced liver injury (amoxicillin-clavulanate)		Ischemic stroke
	Atrial fibrillation	\bigcirc	Endometrial cancer	0	Juvenile idiopathic arthritis
	Attention deficit hyperactivity disorder		Endometriosis		Keloid
	Autism		Eosinophil count		Kidney stones
	Basal cell cancer	0	Eosinophilic esophagitis		LDL cholesterol
	Behcet's disease	0	Epirubicin-induced leukopenia		Leprosy
	Bipolar disorder		Erectile dysfunction and prostate cancer treatment		Leptin receptor levels
	Biliary atresia		Erythrocyte parameters		Liver enzymes
	Bilirubin		Esophageal cancer	->3	Longevity
	Bitter taste response	0	Essential tremor	0	LP (a) levels
\rightarrow 0	Birth weight		Exfoliation glaucoma		LpPLA(2) activity and mass
\rightarrow	Bladder cancer	\longrightarrow 0	Eye color traits		Lung cancer

GWAS of Disease Susceptibility

- May 2011:
 - 800 GWAS published
 - 150 diseases
 - > 2.400 SNPs with statistically significant associations + odds ratio
- Crohn's diseases: > 32 variants
- Type 2 Diabetes: > 20 variants ~ Disease risk
- CAD: > 200 variants

Next ----> Whole Genome Sequencing!

Mutation Details


Lung Carcinoma genome

• Nature 2010 463; 184-90.

22,910 mutations

58 rearrangements

334 copy number segments

Analysing Cancer Genomes

Cancer genomes contains a lot of genetic damage.

- Many of the mutations in cancer are incidental.
- Initial mutation disrupts the normal DNA repair/replication processes.
- Corruption spreads through the rest of the genome.

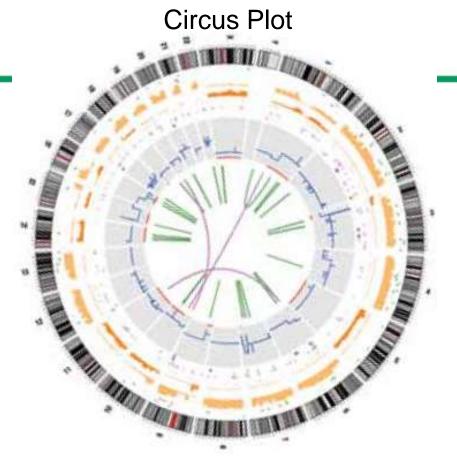
Today: Find the "driver" mutations amongst the thousands of "passengers.

Identifying the driver mutations will give us new targets for therapies.

Tomorrow: Analyse the cancer genome of every patient in the clinic.

- Variations in a patient and cancer genetic makeup play a major role in how effective particular drugs will be.
- Clinicians will use this information to tailor therapies.

Tumor Sequencing


UAM

Spectral Karyotyping

Illumina (2011-2014):

whole-genome sequencing of up to 1,500 samples over the next three years on both tumor and normal genomes toward prostate and esophageal cancers

Paired-end sequencing (Indels, Substitutions, CNV, LOH, intra- and inter chromos. variants)

International Cancer Genome Project

Many cancer mutations are rare.

Low signal-to-noise ratio.

How do we find the rare but important mutations?

Sequence lots of cancer genomes.

International Cancer Genome Project.

Consortia of sequencing and cancer research centres in 10 countries.

Aim of the consortia.

Complete genomic analysis of 50 different tumor types. (50,000 genomes).

http://cancergenome.nih.gov

I News from the Pilot Project

National Institutes of Health to Map Genomic Changes of Lung, Brain, and Ovarian Cancers

The National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both part of the National Institutes of Health (NIH), today announced the first three cancers that will be studied in the pilot phase of The Cancer Genome Atlas (TCGA) project. The cancers to be studied in the TCGA Pilot Project are lung, brain (glioblastoma), and ovarian. These cancers, which collectively account for more than 210,000 cancer cases each year in the United States, were selected because of the availability of biospecimen collections that met TCGA's strict scientific, technical, and ethical requirements.

www.technologyreview.com/view/413516/the-personal-genome-project-has-a-growth-spurt/

The Personal Genome Project Has a Growth Spurt

Thirteen thousand people will divulge their genetic histories online.

The first 10 volunteers for the Personal Genome Project.

The 10 intrepid volunteers who signed up for George Church's Personal G will soon have a lot of company. According to a report from Northwestern people are in the process of enrolling in the project, which involves having your genome sequenced, and then sharing it, along with medical records in an open-access database for analysis by geneticists and others around

Here's a brief description of the project from a piece I wrote last October.

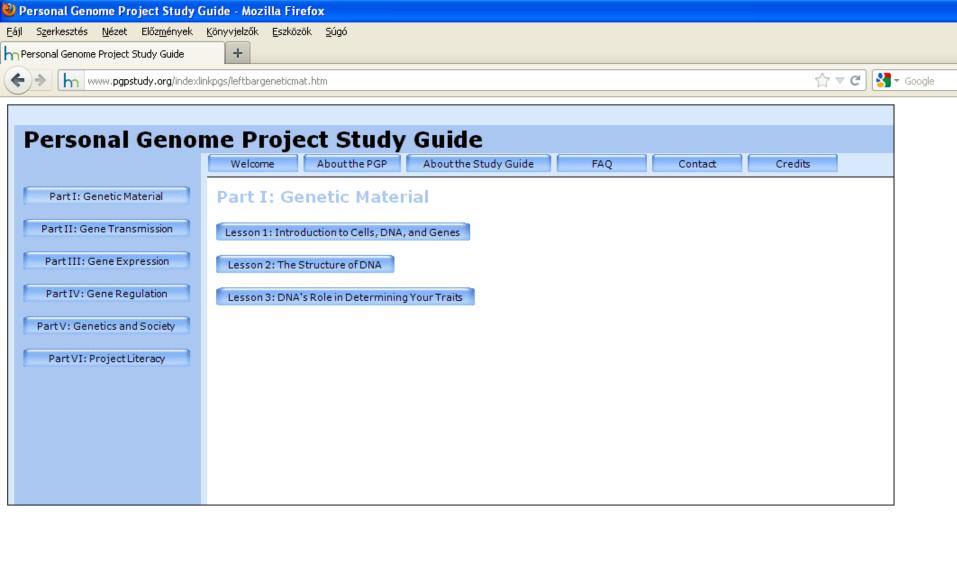
The Personal Genome Project is a long term, large cohort study

Aims to sequence and publicize the complete genomes and medical records of 100,000 volunteers, in order to enable research into personal genomics and personalized medicine.

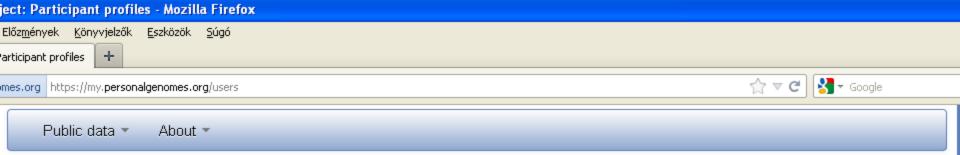
It was initiated by <u>Harvard</u> <u>University</u> in 2005.

Headed by Harvard University genomics pioneer George Church, the project aims to

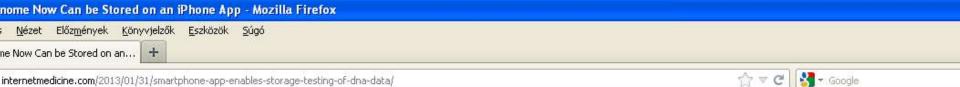
Personal Genome Project



- The individuals agree to make their genome and their health records public.
- Volunteers... willing to share their genome sequence and many types of personal information with the research community and the general public,
- Aim: to understand genetic and environmental contributions to human traits."


The project publishes the

- genotype (the full <u>DNA sequence</u>),
- <u>phenotype</u>: medical records, various measurements,
 <u>MRI</u> images, etc.
- all data are within the <u>public domain</u>
- made available over the <u>Internet</u> so that researchers can test various hypotheses about the relationships among <u>genotype</u>, <u>environment</u> and <u>phenotype</u>.



Participant Profiles

The participants in the PGP have volunteered to share their DNA sequences, medical information, and other personal information with the research community and the general public.

PGP#	participant ID	Date enrolled	Received samples	Health records	Relatives enrolled	Whole genome datasets	Other genetic data
^	\$	\$	\$	\$	\$	\$	\$
PGP1	<u>hu43860C</u>	2010-11-20	Whole Blood,Microbiome	Yes	1	1	1
PGP2	huC30901	2010-11-20		Yes		1	
PGP3	huBEDA0B	2010-11-20	Saliva,Whole Blood,Microbiome			3	
PGP4	huE80E3D	2007-04-02				1	
PGP5	hu9385BA	2010-11-20	Microbiome	Yes		4	
PGP6	hu04FD18	2010-11-20	Saliva	Yes		1	
PGP7	hu0D879F	2010-11-20	Saliva,Whole Blood			3	
PGP8	huAE6220	2010-11-20		Yes		1	
PGP9	<u>hu034DB1</u>	2010-11-20	Saliva,Whole Blood,Microbiome			3	2
PGP10	hu604D39	2010-11-20	Microbiome	Yes		4	

HOME

MEDICAL DEVICES

MEDICAL APPS

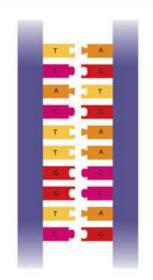
I-TECH

I-MEDICAL SETTINGS

I-PATIENT

I-HEALTH

I-EDU


I-SPECIALTY

I-NEWS

I-DAILIES

Smartphone app enables storage, testing of DNA data

Posted by admin / January 31, 2013

MEDICAL APPS NEWS »

Derm Consult for Inpatients? There's an App for That

SOURCE Feb 13, 2014 Diagnostic apps for dermatologists are no new smartphone...

February 17, 2014 2:31 am

New Healthpatch biosensor captures a wide range of information with just adhocivo disposable nateb

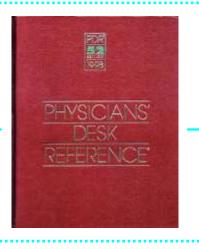
Leav

Personalized Medicine: Definition

The use of information and data from a patient's genotype and phenotype (level of gene expression and/or clinical information) to:

- stratify disease
- select a medication
- provide a therapy

initiate a preventative measure that is particularly suited to that patient at the time of administration



Trial and error

Symptom Diagnosis Treatment Dosage

Non specific Non selective Uniformized

Phenotype

Does not evaluate the different therapeutic responses - the blockbuster concept

Medicine in the XX. Century

"One fits to all"

The target is the disease

- Evidence based medicine
 - statistical approach using the rule of large numbers, resulting in statistically meaningful conclusions

PROBLEM!

Ineffective therapies – waste money

Hypertension Drugs 10-30%

ACE Inhibitors

Heart Failure Drugs 15-25%

Beta Blockers

Anti Depressants 20-50%

SSRIs

Cholesterol Drugs 30-70%

Statins

Asthma Drugs 40-70%

Beta-2-agonists

Personalized Medicine: The Answer?

Targeted therapy:

Differentiate, diagnostics and drug co-development

Observation

Testing (Biomarker)

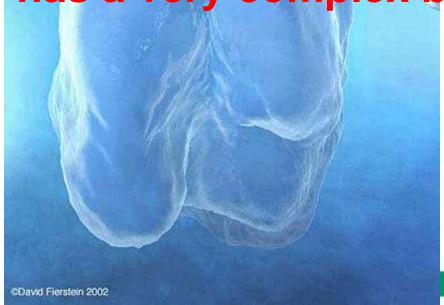
Treatment

Predicted response

Targeted therapies help by identifying patients with the best response and least side effects

Biomarkers are such diagnostic tools, wich may predict the therapeutic response to a certain drug

Drug-Diagnostics Combinations in Oncology


- The current efficacy of medical anti-cancer therapy is still not (far from) optimal
- Rational use of drugs
 - The right drug
 - For the right patients
 - In the right amount
 - At the right time
- The key elements in pharmacotherapy
 - Pathophysiology
 - Mechanism of action of the drug

Drug-Diagnostics Combinations in Oncology

Cancer has a very complex biology

Companion Diagnostics/ Pharmacodiagnostics

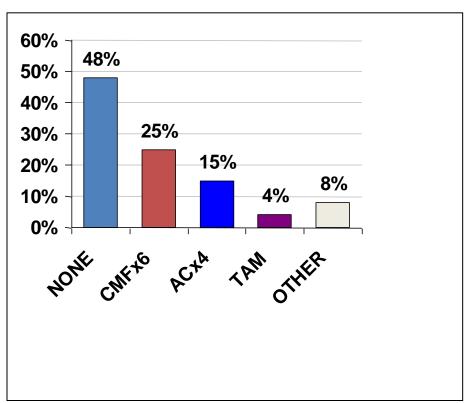
Companion Diagnostics

 "Match" the pathophysiology with the mechanism of action of the drug

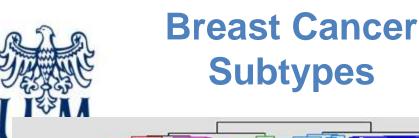
Definition

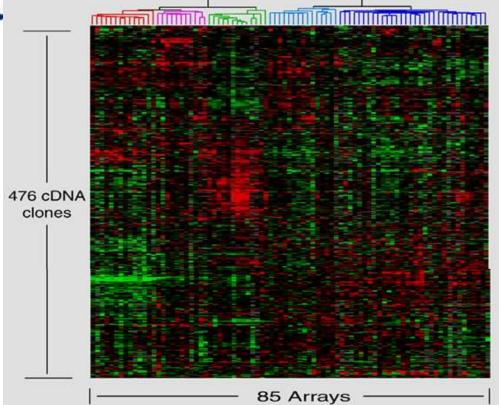
– A pre-treatment test performed in order to determine whether or not a patient is likely to respond to a given therapy. This type of test is classified as a predictive test and a prerequisite for implementation of stratified and personalized medicine.*

*Jørgensen JT. Expert Rev Mol Diagn 2008; 8: 689-695.

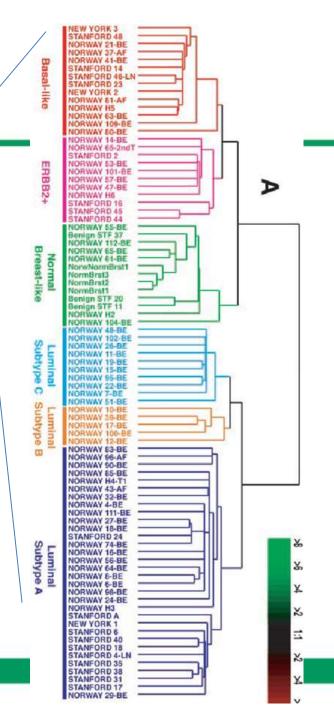


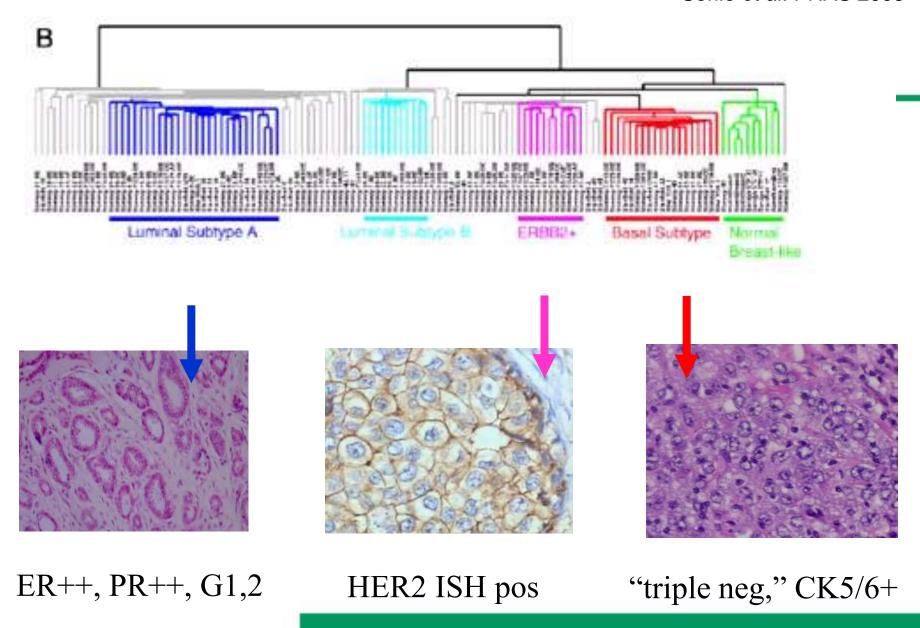
Breast Cancer: The Treatment Dilemma


61 y-old, fit, postmenopausal

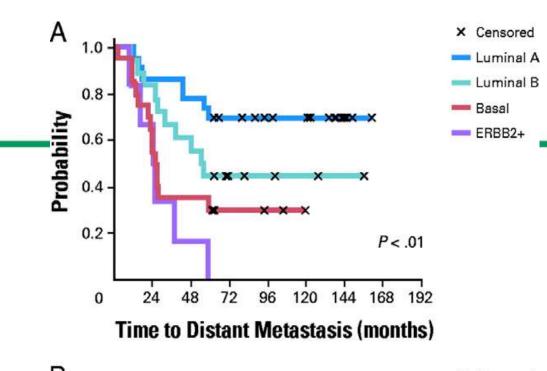

Node negative pT = 0.9 cm ductal cancer ER and PR negative HER2 negative Grade 2

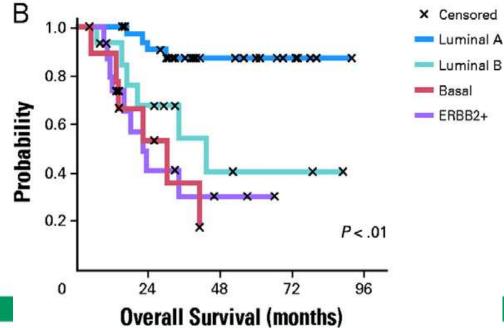
Choices of 40 experts world-wide




Courtesy: Martine Piccart

- Disease Onset + Progression
- Disease Subtyping/Classification





Breast Cancer Subtype

Clinical Outcome

Tamoxifen (Nolvadex®) - ER

Phase II Study of Tamoxifen: Report of 74 Patients With Stage IV Breast Cancer¹

Harvey J. Lerner,2* Pierre R. Band,3,4 Lucien Israel,5 and Benjamin S. Leung 6,7

SUMMARY

Tamoxifen (NSC-180973), a synthetic antiestrogen, was studied for efficacy and toxicity in patients with metastatic breast adenocarcinoma. Two dose levels were used, 10 mg bid and 15 mg/m² bid, in separate groups. In the 10-mg bid dosage group, 30 of the 31 patients were considered evaluable for efficacy. Five complete

Tamoxifen (NSC-180973), a synthetic antiestrogen, was studied for efficacy and toxicity in patients with metastatic breast adenocarcinoma. Two dose levels were

thrombocytopenia, nausea, and fluid retention. A high degree of correlation between response and positive estrogen-receptor assay suggests the value of the test as a means to select patients for tamoxifen treatment. The conclusion from this study is that tamoxifen used as a single agent is an effective drug with minimal toxicity for treatment of metastatic breast adenocarcinoma.

[Cancer Treat Rep 60:1431-1435, 1976]

Tamoxifen is a synthetic triphenyleth ative with potent antiestrogen activity mammalian species (1). It inhibits the estradiol to uterine receptors from various experimental animals (2) and exerts an inhibitory effect on the growth of the DMBA-induced rat mammary tumor (3). In man, tamoxifen inhibits the binding of estradiol to receptors from normal endometrium (4) and adenocarcinoma of the breast and uterus (5.6)

The high degree of correlation observed between response rate and positive ER assay suggests the value of this test as a means to select patients for tamoxifen treatment.

with evaluable disease. Except for nine patients, all had undergone prior mastectomy and approximately half had at least one course of non-hormonal chemotherapy.

The criteria for patient inclusion were: histologically proven breast adenocarcinoma with metas-

Trastuzumab (Herceptin®) Breast Cancer

Human Epidermal growth factor receptor 2

- HER2

The New England

V O

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

OCTOBER 20, 2005

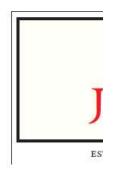
VOL. 353 NO. 16

USE (

Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer

De Virg

Martine J. Piccart-Gebhart, M.D., Ph.D., Marion Procter, M.Sci., Brian Leyland-Jones, M.D., Ph.D., Aron Goldhirsch, M.D., Michael Untch, M.D., Ian Smith, M.D., Luca Gianni, M.D., Jose Baselga, M.D., Richard Bell, M.D.,
 Christian Jackisch, M.D., David Cameron, M.D., Mitch Dowsett, Ph.D., Carlos H. Barrios, M.D., Günther Steger, M.D., Chiun-Shen Huang, M.D., Ph.D., M.P.H., Michael Andersson, M.D., Dr.Med.Sci., Moshe Inbar, M.D.,
 Mikhail Lichinitser, M.D., István Láng, M.D., Ulrike Nitz, M.D., Hiroji Iwata, M.D., Christoph Thomssen, M.D.,
 Caroline Lohrisch, M.D., Thomas M. Suter, M.D., Iosef Rüschoff, M.D., Tamás Sütő, M.D., Ph.D.


ABSTRAC Backgree growth fa

BACKGROUND

Trastuzumab, a recombinant monoclonal antibody against HER2, has clinical activity in advanced breast cancer that overexpresses HER2. We investigated its efficacy and safety after excision of early-stage breast cancer and completion of chemotherapy.

Cetuximab (Erbitux®) Panitumumab (Vectibix®) - EGFR/K-ras

VOLUME 26 - NUMBER 10 - APRIL 1 2008

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Wild-Type KRAS Is Required for Panitumumab Efficacy in Patients With Metastatic Colorectal Cancer

Rafael G. Amado, Michael Wolf, Marc Peeters, Eric Van Cutsem, Salvatore Siena, Daniel J. Freeman, Todd Juan, Robert Sikorski, Sid Suggs, Robert Radinsky, Scott D. Patterson, and David D. Chang

Christos S. Dongsheng Tu Sonia From Arngen Inc, Thousand Oaks, CA, Ghent University Hospital, Ghent, Belgium; University Hospital Gasthuisberg, Leuven, Belgium; and the Ospedale Niguarda Ca' Granda, Milan, Italy.

Submitted October 1, 2007; accepted November 20, 2007; published online ahead of print at www.joo.org on March 3, 2008.

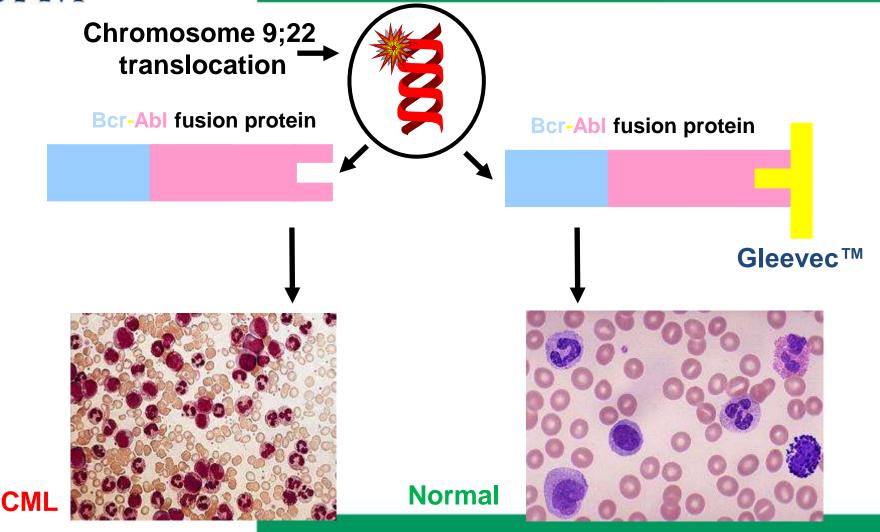
Funded by Amgen Inc. Thousand

Purpose

Panitumumab, a fully human antibody against the epidermal growth factor receptor (EGFR), has activity in a subset of patients with metastatic colorectal cancer (mCRC). Although activating mutations in KRAS, a small G-protein downstream of EGFR, correlate with poor response to anti-EGFR antibodies in mCRC, their role as a selection marker has not been established in randomized trials.

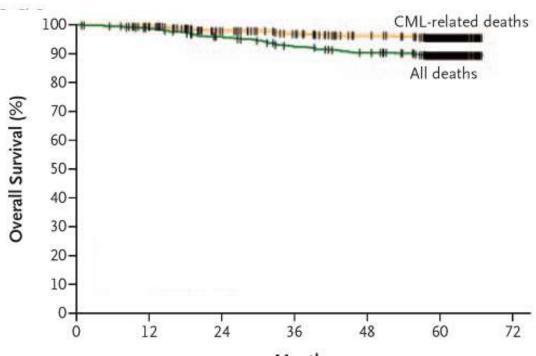
Patiente and Methode

Purpose


Panitumumab, a fully human antibody against the epidermal growth factor receptor (EGFR), has activity in a subset of patients with metastatic colorectal cancer (mCRC). Although activating mutations in KRAS, a small G-protein downstream of EGFR, correlate with poor response to anti-EGFR antibodies in mCRC, their role as a selection marker has not been established in randomized trials.

tions are found at the end of this article.

weeks for panitumumab and 7.3 weeks for BSC. Response rates to panitumumab were 17% and 0%, for the WT and mutant groups, respectively. WT KRAS patients had longer overall survival

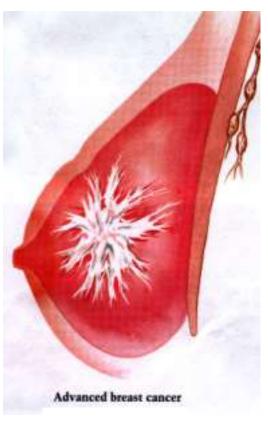

Imatinib (Gleevec™) – Specifically Targets An Abnormal Protein, Blocking Its Ability To Cause Chronic Myeloid Leukemia

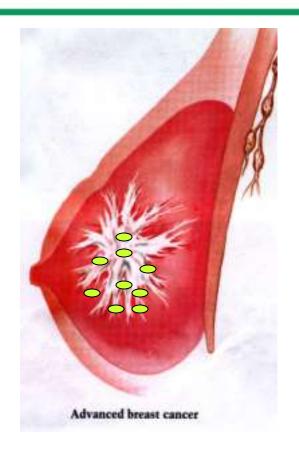
ORIGINAL ARTICLE

Five-Year Follow-up of Patients Receiving Imatinib for Chronic Myeloid Leukemia

Brian J. Druker, M.D., François Guilhot, M.D., Stephen G. O'Brien, M. Insa Gathmann, M.Sc., Hagop Kantarjian, M.D., Norbert Gattermal Michael W.N. Deininger, M.D., Ph.D., Richard T. Silver, M.D. John M. Goldman, D.M., Richard M. Stone, M.D., Francisco Cervan Andreas Hochhaus, M.D., Bayard L. Powell, M.D., Janice L. Gabrilo Philippe Rousselot, M.D., Josy Reiffers, M.D., Jan J. Cornelissen, M. Timothy Hughes, M.D., Hermine Agis, M.D., Thomas Fischer, I Gregor Verhoef, M.D., John Shepherd, M.D., Giuseppe Saglio, I Alois Gratwohl, M.D., Johan L. Nielsen, M.D., Jerald P. Radich, I Bengt Simonsson, M.D., Kerry Taylor, M.D., Michele Baccarani, Charlene So, Pharm.D., Laurie Letvak, M.D., and Richard A. Larson, M.D., for the IRIS Investigators*

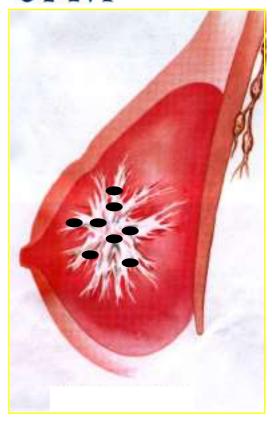
N ENGLJ MED 355;23 WWW.NEJM.ORG DECEMBER 7, 2006

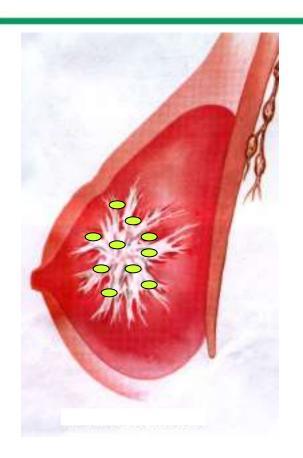



Cost-Effective?

- Gleevec as 1st line therapy for CML
- 6 years increased survival over interferonalpha therapy
- \$43,100/per life-year saved

HER2 Gene Product is Overexpressed in One Third of Breast Cancers





- TUMOR OVEREXPRESSING HER2
- ·SENSITIVE TO HERCEPTIN

Goal: Tailoring New Drugs to Target Different Types of Breast Cancer

- TUMOR OVEREXPRESSING ? TUMOR OVEREXPRESSING HER2
- SENSITIVE TO ???
- SENSITIVE TO HERCEPTIN
- ·TUMOR OVEREXPRESSING?
- SENSITIVE TO ???

Drug-Diagnostics Combinations in Oncology

- The improvement of future medical anti-cancer therapy will come from our increased understanding of the molecular pathophysiology and drug mechanisms of action
- The key driver in this process will be the molecular analytical methods and molecular diagnostics
- Parallel drug-diagnostic co-development will be the standard development model for new anti-cancer drugs
- Future medical anti-cancer therapy will be more individualized compared with today's knowledge
- In 2020 most anti-cancer drugs will be prescribed based on the results of a companion diagnostic/pharmacodiagnostic test

ORIGINAL ARTICLE

Effect of VKORC1 Haplotypes on Transcriptional Regulation and Warfarin Dose

Mark J. Rieder, Ph.D., Alexander P. Reiner, M.D., M.P.H.,
Brian F. Gage, M.D., M.Sc., Deborah A. Nickerson, Ph.D., Charles S. Eby, M.D.,
Howard L. McLeod, Pharm.D., David K. Blough, Ph.D.,
Kenneth E. Thummel, Ph.D., David L. Veenstra, Pharm.D., Ph.D.,
and Allan E. Rettie, Ph.D.

N ENGL J MED 352;22 WWW.NEJM.ORG JUNE 2, 2005

Case Study: Warfarin

- Most widely prescribed oral anticoagulant for preventing thrombolytic events, despite its narrow therapeutic range
- Problematic dosing due to patient's diet, age, and other medications
- Second most common drug implicated in adverse drug reactionlinked emergency room visits

Sources: US FDA (<u>www.fda.gov</u>), Warfarin Information; Rettie et al. *Molecular Interventions* 2006; 6(4):223-227; Flockhart et al. *Genetics in Medicine* 2008; 10(2):139-150

Personalized Warfarin Dosing

Drug-metabolizing enzyme Variations

- One-third of thrombosis patients metabolize their warfarin dose differently than expected due in large part to variations of VKORC1 and CYP2C9
- VKORC1 SNPs, such as the 1639G>A allele, indicate that a patient will respond well to a lower dose of warfarin
- CYP2C9*2 and CYP2C9*3 alleles encode SNP variants of CYP2C9 with reduced efficiency in degrading warfarin
- Warfarin labeling suggesting genetic testing of *VKORC1* and *CYP2C9* is the first indication of personalized dosing being approved by the FDA

Companion Diagnostics

Breast cancer: Herceptin

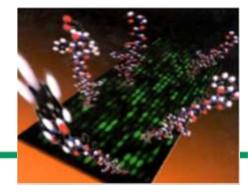
Drug Choice

HER2 (30%1)

(Human Epidermal growth factor receptor 2)

Blood clot prevention: Warfarin

Drug Dose


CYP2C9

(Drug-metabolizing enzyme

Variations: Adverse Drug Reactions)

Clinically Available Molecular Diagnostics

Diagnostic Kits Laboratory-developed-tests (LDTs)

Time point in	Cancer		Cardiovascular disease	
clinical decision making	Test	Indication	Test	Indication
Risk/susceptionney	BRCA1, BRCA2 HNPCC, MLH1, MSH2 TP53, PTEN	Breast Colon Sarcomas	KIF6, 9p21 Familion® 5-gene profile	CAD LQTS
Screening	HPV genotypes	Cervical	Corus TM CAD	CAD
Diagnosis	Lymphochip	Lymphoma	Corus CAD	CAD
Prognosis	Oncotype DX [®] (21-gene assay) MammaPrint [®] (70-gene assay) Her2/neu, ER, PR	Breast	TnI, BNP, CRP	ACS
Pharmacogenomics	Her2/neu UGT1A1 KRAS EGFR Amplichip®; DMET TM CYP2D6/CYP2C19	Herceptin Irinotecan Cetuximab Erlotinib, gefitinib Various others (see Table 2)	KIF6, SLCO1B1 Amplichip; DMET CYP2D6/CYP2C19 VKORC1	Statins Warfarin Various others (see Table 2)
Monitoring	nitoring CTCs		AlloMap [®] gene profile	Transplant rejection

AmpliChip

A range of drug metabolism phenotypes is observed for individuals based upon the particular cytochrome P-450 genes they possess.

Analysis of CYP2D6 and CYP2C19 genes

Comprehensive detection of gene variations – including deletions and duplications – for the CYP2D6 and CYP2C19 genes, which play a major role in the metabolism of an estimated 25 percent of all prescription drugs. This test helps clinicians determine therapeutic strategy and treatment dose for therapeutics metabolized by the CYP2D6 or CYP2C19 gene product.

Source: Caraco, Y., N Engl J Med, 2004

Multiplex Tests are Already Starting to Have an Impact

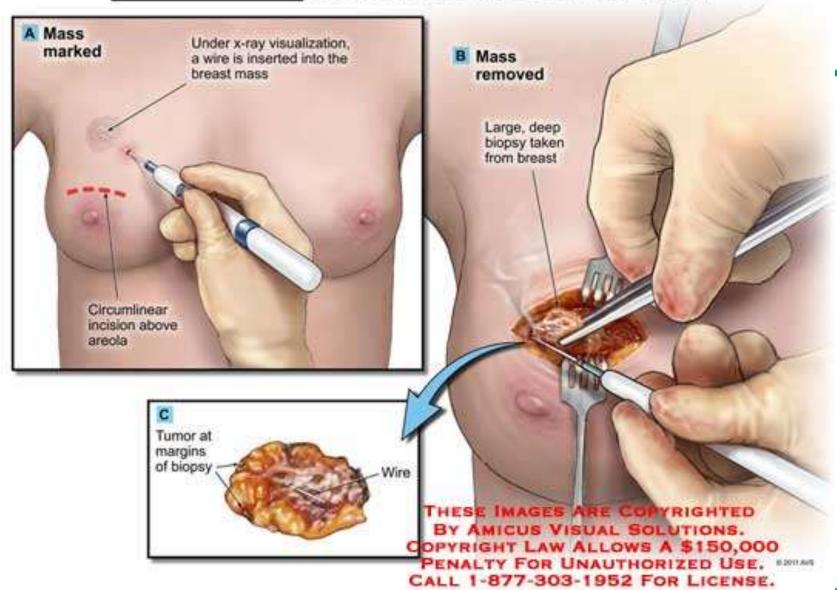
OncoType DX

Analyzes by qPCR, mRNA expression of a panel of 21 genes within a tumor to determine a Recurrence Score

MammaPrint

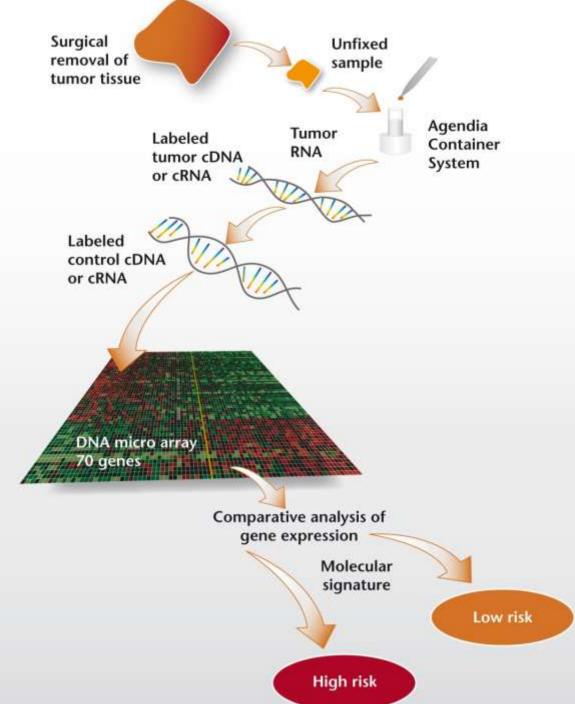
Microarray-based prognostic breast cancer mRNA expression profiling test of 70 genes

AlloMap

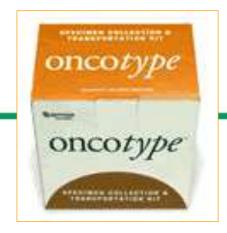

qPCR-based expression profile of 11 genes to assist physicians in managing heart transplant patients for potential organ rejection

Tissue of Origin

Microarray technology considers 15 common malignant tumor types, including bladder, breast, and colorectal tumors based on mRNA expression on 1,550 genes



's 11/19/01 Right Breast Biopsy



Oncotype DX®: A Genomic Assay

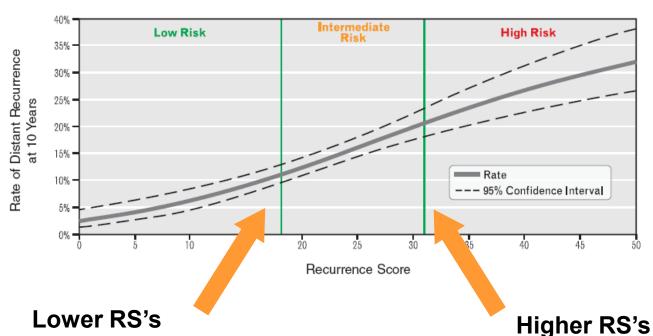
Recurrence tumor after surgery Decision-making about treatment

a 21-Gene Assay for N-, ER+, Tam+ Patients

The Recurrence Score® Result Uses Key Genes Linked to Critical Molecular Pathways

16 Breast Cancer related genes

Estrogen Proliferation HER2 Invasion **Others CD68 Ki-67 Stromelysin 3** GRB7 ER **STK15** HER2 Cathepsin L2 PR GSTM1 Survivin Bcl2 Cyclin B1 **SCUBE2** MYBL2 BAG1


5 REFERENCE GENES

Beta-actin GAPDH RPLPO GUS TFRC

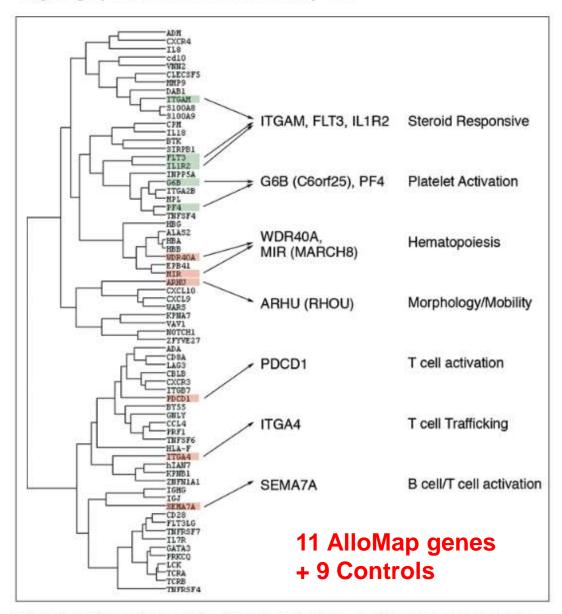
Oncotype DX[®] is a Standardized and Quantitative Assay

Recurrence Score® in N-, ER+ patients

- Lower likelihood of recurrence
- Minimal, if any, chemotherapy benefit
- Greater likelihood of recurrence
- Clear chemotherapy benefit
- 1) Paik et al. NEJM 2004, 2) Habel et al. Breast Cancer Research 2006
- 3) Paik et al. JCO 2006, 4) Gianni et al. JCO 2005

Conclusions

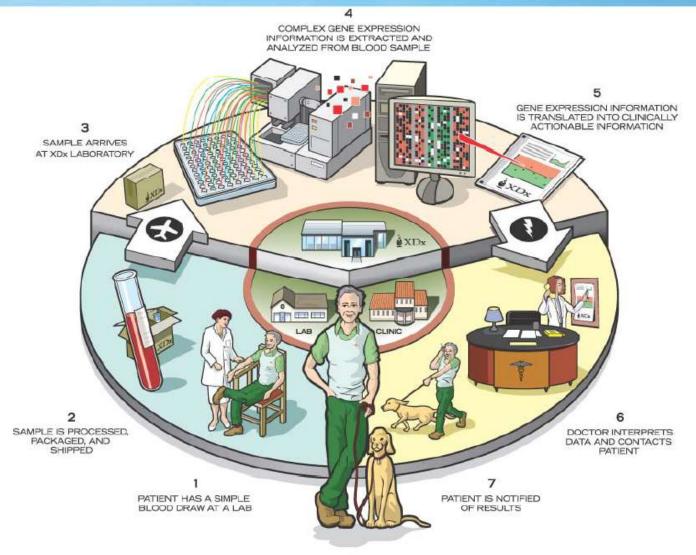
- The Oncotype DX® Recurrence Score assay predicts the likelihood of adjuvant chemotherapy benefit
- It also is a prognostic assay for the risk of distant recurrence at ten years assuming five years of adjuvant tamoxifen treatment
- Oncotype DX® Recurrence Score assay shows consistent results across multiple independent studies


Personalizing Care for Heart Transplant Patients

AlloMap® is a non-invasive blood test for heart transplant patients. AlloMap is the first and only non-invasive test with a rapid turnaround time that helps physicians identify the risk of acute cellular rejection in heart transplant recipients.

Since its introduction in 2005, AlloMap has helped to:

- Reduce patients' pain, anxiety, and risk caused by biopsies through a simple, non-invasive method of blood sample collection
- Give providers accurate information on the risk of acute cellular rejection in their patients following heart transplant


Targeting Specific Genes for the AlloMap Test

Using linear discriminant analysis, the expression levels of 11 genes were selected for the calculation of the AlloMap score (integer 0-40). This set of genes best distinguished between the presence and absence of rejection in the development of the AlloMap test.

Pathway and Gene Expressi	on Level
T cell priming	
ITGA4	
Integrin alpha-4 α subunit of VLA-4; involved in T cell trafficking and adhesion	1
PDCD1	40
Programmed cell death T cell costimulatory molecular (inhibitory); CD28 family	1
Proliferation and mobilization of erythrocytes	
MARCH8	
Cellular mediator of immune response (MIR) E3 ubiquitin ligase	Î
WDR40A	1.18
WD repeat domain 40A Uncharacterized protein of the WD-repeat protein family	1
Platelet activation	
PF4	
Platelet factor 4 Chemokine-like molecule expressed in platelets	+
C6orf25 G6b inhibitory receptor Putative inhibitory receptor of the Ig superfamily expressed in platelets	
Steroid response	
IL1R2	
Interleukin-1 receptor type II IL-1 decoy receptor inhibits cytokine signaling; steroid-dependent expression	1
ITGAM	
Integrin alpha-M α subunit of MAC-1; involved in cell trafficking	*
FLT3	
FMS-like tyrosine kinase Signaling molecule expressed in monocytes	*
Unknown role	
SEMA7A	
Semaphorin 7A Expressed by T cells, B cells, and immature granulocytes	1
RHOU	
Ras homolog gene family, member U Member of the Rho GTPase family involved in the modulation of cytoskeleton organization	1

AlloMap Workflow

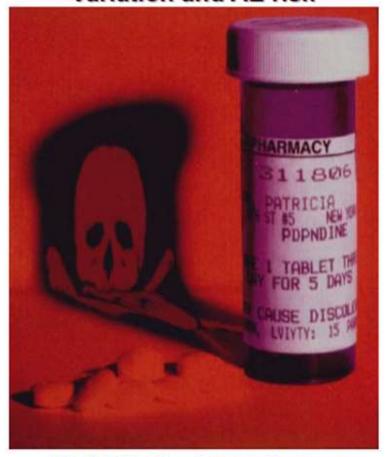
Tissue of Origin

Tissue of Origin®

The Tissue of Origin test, formally a Pathwork test, is a microarray-based gene expression test that aids in identifying challenging tumors, including metastatic, poorly differentiated, and undifferentiated cancers. TOO is the **ONLY** FDA-cleared test of its type and is a Medicare-reimbursed test.

Tissue of Origin® Overview

- The Tissue of Origin reports the most likely tissue of origin from 15 of the most common tumor types, representing 58 morphologies.
- 2000 genes, covering 15 tumors types and 90% of all solid tumors¹
- Extensive analytical and clinical validation.
- Statistically significant improvement in accuracy over other methods, including IHC²
- Leads to a change in treatment 65% of the time.


From Pharmaceuticals to Pharmasuitables

Disease Subtyping:

Right Rx for Right Disease

Individual Variation and AE risk

Right Rx for Right Patient

BIDIL

First drug approved by FDA that comes with a race-specific label:

"For African Americans Only"

November 2005

Personalized Medicine: A future dream

Betty's story in 2017

- Betty completes the Surgeon General's family history tool at age 25, learns of uncles with early heart disease.
- She consults her PA, who works in a practice that has made an effort to stay informed about genomic medicine. She suggests complete genome sequencing for \$1000.
- Betty inquires about the risk of genetic discrimination, but effective legislation has outlawed this.
- She is found to have three gene variants that have been shown conclusively in well validated studies to increase her risk of early heart attack 4-fold.
- She and her PA design a program of prevention based on diet, exercise, and medication precisely targeted to her genetic situation.

Betty's story continues

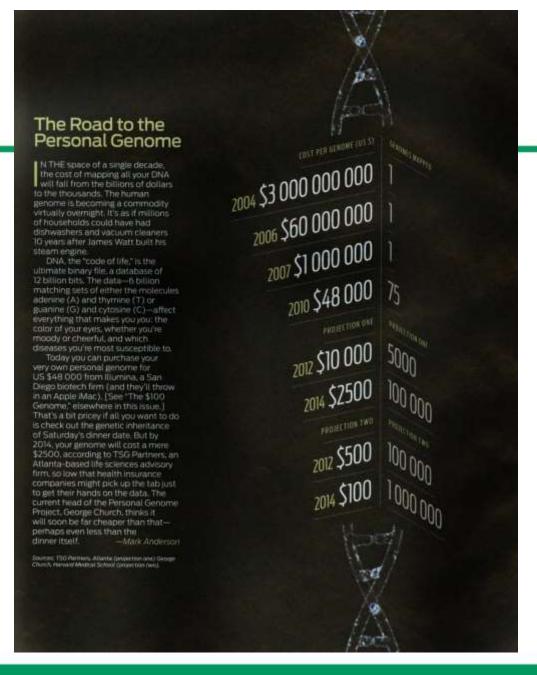
- Betty does well until age 75.
- She develops left arm pain that she assumes is due to gardening, but her care providers know her higher risk and diagnose an acute MI.
- Referring to her genome sequence, the PA and MD choose the drugs that will work best to treat her.
- She survives and is alive and well in the 22nd century.

Personalized Medicine: Could the dream become a nightmare?

Betty's story gone wrong

- Betty never learns about her family history, educational efforts for the public and health care providers were defunded, community efforts never got off the ground, and Betty's PA and MD thought genetics was irrelevant to practice.
- Betty hears about genome sequencing, but after seeing her brother lose his health insurance from this information, she decides not to.
- Betty eats an unhealthy diet, gains weight, and develops high blood pressure.
- While tests to predict which drug would be most effective for Betty have been proposed, they have never been validated, and are not reimbursed.

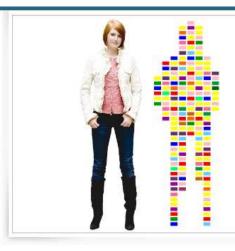
Betty's story gone really wrong


- Betty's hypertension is treated with a drug that causes a hypersensitivity reaction, so she stops treatment.
- After 10 years of uncontrolled hypertension, Betty develops left arm pain at age 50.
- Unaware of her high risk, her PA assumes this is musculoskeletal and prescribes rest.
- Betty returns to the ER a few hours later in cardiogenic shock.
- The absence of her genome sequence information prevents immediate optimum choice of therapy.
- Betty dies in the ER.

"Personal Genome"

> 50 companies World-wide

Challenge: Premature Translation "Genomics and Personalized Health"


Home

What is deCODEme?

About deCODE

Signup

Login to myCODE

deCODE genetics the pioneers in gene discovery

deCODEme

the most comprehensive genome scan with information on more diseases and genes

Know your CODE. Join deCODEme today.

Login to myCODE

- For only \$985 we scan over one million variants in your genome
- . Calculate genetic risk for 17 diseases based on the current literature
- · Find out where your ancestors came from
- · Invite friends and family, compare your genomes
- . Get regular updates on future discoveries and a growing list of diseases and traits

Ordering information

For a low introductory price of \$985 deCODEme is a living website you can order a Genetic Scan of over one million variants accross receive your sample you will have access to your personal genome profile.

»More

What is deCODEme?

which will be continuously updated genetics' unrivaled track record with information by deCODE can study your genome profile in an easy manner guided by the scientists who discovered the genes.

»More

About deCODE

Discover more about deCODE and how deCODE spearheaded the genome. In 2-3 weeks after we genetics' team of experts. Now you discovery of key genes contributing to healthcare challenges ranging from heart disease to cancer. »More

sign up now

- 1 Create an account and place your order for Genetic Scan.
- Receive our sample collection kit and mail back a sample in the enclosed self addressed stamped envelope.
- Receive a notification from deCODE me and access your CODE on a personalized and secure website.

sign up

Challenge: Premature Translation "Genomics and Personalized Health"

Your genes offer a road map to optimal health

Welcome to Navigenics

We are in the midst of an exciting era of discoveries about the connections between our individual genetic composition and our personal health and wellness. These discoveries are providing a detailed map of thousands of genes that instruct the body how to grow, live and thrive – and a better understanding of how variations in these genes may influence our health over time.

But how will you know what to do with this information and how it can help you? Navigenics will tell you your genetic health profile and help you develop a plan for wellness and prevention – so you can be even more in control of your health and live a longer, more active life.

Challenge: Premature Translation "Genomics and Personalized Health"

III goriolioo jaol got poroorian

our service genetics 101 for the experts store about us

discover your genome at 23a

1866: Gregor Mendel discovers the laws of inheritance.

200,000 years ago: Homo sapiens walks the Earth.

2003: The Human Genome Project maps a single person's geno

2007: 23andMe introduces the first Personal Genome Service.
Unlock the secrets of your own DNA. Today.

175,000 years ago: The mother of all present-day humans is born in Africa.

1953: Watson and Crick uncover the double-helix structure of DNA.

Welcome to 23 and Me, a web-based service that helps you read and understand your DNA. After providing a saliva sample using an at-

"My Genome, Myself: Seeking Clues in DNA" A. Harmon, New York Times, Nov 17, 2007

Using the Web site of 23andMe, a company that queried 550,000 SNPs in a sample of her DNA, the reporter determined that her genotype for adult lactose intolerance is **GG** (she is lactose intolerant). Some of her other genotypes are below:

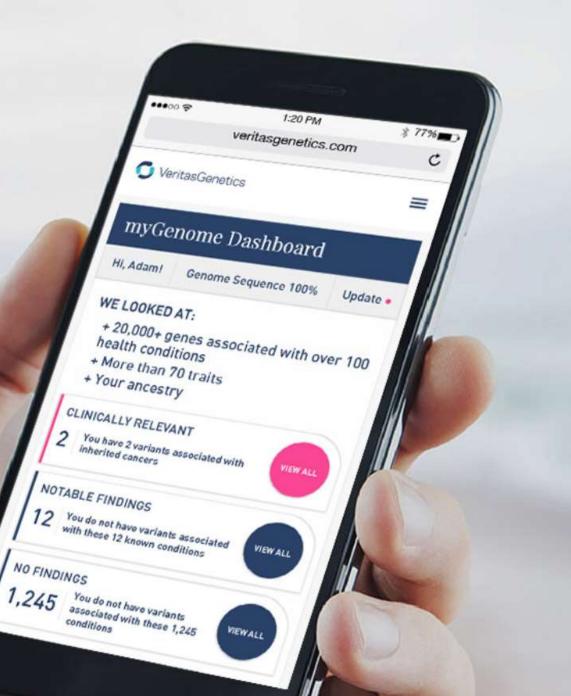
SNP	Location	Genotype	Genotype associated with
rs662799	APOA5	AA	Tendency to gain weight when eating fatty foods
rs174575	FADS2	CC	Higher I.Q. if breast fed for nine months as infant
rs6920220	6q23	GG	Low risk of rheumatoid arthritis
rs17070145	KIBRA	CC	Relatively poor verbal memory
rs1801260	CLOCK	AA	Early rising
rs1953558	OR11H7P	CC	Sensitivity to smell of sweat
rs17822931	ABCC11	CC	Wet earwax

"I am convinced that within five years every college-educated person in America is going to have a profile like this. You cannot afford not having this."

Kari Stefansson, DeCode Genetics-April 1, 2008

This Breast Cancer Awareness Month, #screen2know

Sequence your whole genome


my Genom

Screen for breast & ovarian cancer risk

myBRCA

Sequencing human Genome <1000 \$

Clear, simple, powerful.

From answering specific questions to giving you the most comprehensive view of your genetic make-up, our goal is to empower you to make smarter decisions so you can live healthier, longer.