

Exploring ligand-transport pathways in proteins Structure, dynamics, function & dysfunction

Jan Brezovsky, Ph.D., prof. IIMCB & UAM

&

Laboratory of Biomolecular Interactions and Transport

Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University

International Institute of Molecular and Cell Biology in Warsaw

Journey to the protein core and back

Jan Brezovsky, Ph.D., prof. IIMCB & UAM

&

Laboratory of Biomolecular Interactions and Transport

Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University

International Institute of Molecular and Cell Biology in Warsaw

Outline

- Transport pathways in soluble/globular proteins
- Bioinformatics methods for pathway analysis
- Effect of mutations in transport pathways
- Roles of transport pathways in pathology and drug discovery

Cellular environment

- Proteins
- Nucleic acids
- Membranes
- Metabolites
 - lipids, peptides & sugars
- Water & ions

Cellular environment

- Proteins
- Nucleic acids
- Membranes
- Metabolites
 - lipids, peptides & sugars
- Water & ions

Ligand size

Proteins with functional sites located in occluded cavities

- Proteins with functional sites located in occluded cavities
- **Cognate ligands enter such sites via transport pathways tunnels**

- **Proteins with functional sites located in occluded cavities**
- **Cognate ligands enter such sites via transport pathways tunnels**

- **Proteins with functional sites located in occluded cavities**
- **Cognate ligands enter such sites via transport pathways tunnels**

- Proteins with functional sites located in occluded cavities
- **Cognate ligands enter such sites via transport pathways tunnels**

- **Proteins with functional sites located in occluded cavities**
- **Cognate ligands enter such sites via transport pathways tunnels**

- Proteins with functional sites located in occluded cavities
- **Cognate ligands enter such sites via transport pathways tunnels**

Some basic questions

- How widespread are the tunnels?
- What types of tunnels do exist?
- What are functional roles of the tunnels?

- Proteins with functional sites located in occluded cavities
- **Cognate ligands enter such sites via transport pathways tunnels**

Some basic questions

- How widespread are the tunnels?
- What types of tunnels do exist?
- What are functional roles of the tunnels?

□ Need tools/methods to detect, evaluate and design the tunnels

G Software tool that accounts for protein dynamics by analyzing tunnels

- to identify transient tunnels
- to estimate importance of tunnels

Development of software for analysis of tunnel dynamics

analysis of pathways in Voronoi diagrams

Development of software for analysis of tunnel dynamics

analysis of pathways in Voronoi diagrams

Development of software for analysis of tunnel dynamics

pathway from a cavity to the bulk solvent

Development of software for analysis of tunnel dynamics

starting from a point in the cavity

Development of software for analysis of tunnel dynamics

the shortest and widest pathway identified

Development of software for analysis of tunnel dynamics

the shortest and widest pathway identified

identification of tunnels in each structure

merging all identified tunnels

clustering of tunnels

analysis of tunnels

analysis of tunnel dynamics
Ligand-transport pathways – spread

Ligand-transport pathways – types

What types of tunnels exist?

single tunnel connecting the active site cavity with the bulk solvent

. Candida rugosa lipase **E.C. 3.1.1.3** (PDB-ID 1CRL)

Marques et al. 2016, Understanding Enzymes - Function, Design, Engineering and Analysis, PanStanford, pp. 421-464.

Ligand-transport pathways – types

What types of tunnels exist?

- single tunnel connecting the active site cavity with the bulk solvent
- multiple tunnels connecting the active site cavity with the bulk solvent

Marques et al. 2016, Understanding Enzymes - Function, Design, Engineering and Analysis, PanStanford, pp. 421-464.

Ligand-transport pathways – types

What types of tunnels exist?

- single tunnel connecting the active site cavity with the bulk solvent
- multiple tunnels connecting the active site cavity with the bulk solvent
- multiple tunnels connecting several active sites

Marques et al. 2016, Understanding Enzymes - Function, Design, Engineering and Analysis, PanStanford, pp. 421-464.

Ligand-transport pathways – dynamics

Ligand-transport pathways – gates

2. Methane monooxygenase hydroxylase E.C. 1.14.13.25; PDB-ID 1MHY, 1XVG

3. Acetylcholinesterase E.C. 3.1.1.7; PDB-ID 2XI4

Gora et al. 2013, Chem. Rev. 113: 5871–5923.

Ligand-transport pathways – gates

1. α -amylase E.C. 2.4.1.18; PDB-ID 3N98

- 2. Methane monooxygenase hydroxylase E.C. 1.14.13.25; PDB-ID 1MHY, 1XVG

4. Triosephosphate isomerase E.C. 5.3.1.1; PDB-ID 1TIM, 1TPH

5. HIV Protease E.C. 3.4.23.16; PDB-ID 1HVR, 2PC0

3. Acetylcholinesterase E.C. 3.1.1.7; PDB-ID 2XI4

6. Acylaminoacyl peptidase E.C. 3.4.19.1; PDB-ID 304G

Gora et al. 2013, Chem. Rev. 113: 5871–5923.

Ligand-transport pathways – gates

Gora et al. 2013, Chem. Rev. 113: 5871–5923.

❑ What are functional roles of the tunnels?

control the ligands entry and release to/from the active site

What are functional roles of the tunnels?

- control the ligands entry and release to/from the active site
- synchronize reactions requiring contact of multiple substrates or cofactors

What are functional roles of the tunnels?

- control the ligands entry and release to/from the active site
- synchronize reactions requiring contact of multiple substrates or cofactors
- prevent potentially toxic intermediates to be released into the medium
- avoid labile intermediates to be released into the medium and undergo side reactions

What are functional roles of the tunnels?

- control the ligands entry and release to/from the active site
- synchronize reactions requiring contact of multiple substrates or cofactors
- prevent potentially toxic intermediates to be released into the medium
- avoid labile intermediates to be released into the medium and undergo side reactions
- control access of various solvents to the active sites

What are functional roles of the tunnels?

- control the ligands entry and release to/from the active site
- synchronize reactions requiring contact of multiple substrates or cofactors
- prevent potentially toxic intermediates to be released into the medium
- avoid labile intermediates to be released into the medium and undergo side reactions
- control access of various solvents to the active sites
- prevents dissipation of electrons by solvent

	Mutations	in	existing	pat	hways
--	------------------	----	----------	-----	-------

	utations	in	existing	path	nways
--	----------	----	----------	------	-------

Mutations in existing pathways

alter properties permanent pathways

Mutations in existing pathways

- alter properties permanent pathways
- introduce gate (permanent -> transient)

Koudelakova et al. 2013, Angew. Chem. Int. Ed Engl. 52: 1959–1963. Marques et al. 2017, J. Chem. Inf. Model. 50: 1970–1989.

Mutations in existing pathways

- alter properties permanent pathways
- introduce gate (permanent -> transient)
- remove gate (transient -> permanent)
- modulate gating frequency or amplitude

Liskova et al. 2015, ChemCatChem 7: 648–659.

Mutations in existing pathways

- alter properties permanent pathways
- introduce gate (permanent -> transient)
- remove gate (transient -> permanent)
- modulate gating frequency or amplitude

Gain-of-function mutations in potential pathways

activate new functional pathways

D Potential pathways – globular proteins

leading through voids of proteins with only sub-Å dimension

D Potential pathways – globular proteins

upon gain-of-function mutations, leading to well-defined tunnel

D Potential pathways – globular proteins

• the open tunnel enables efficient transport of waters to the active site

D Potential pathways – globular proteins

the opening of the tunnel have profound functional consequences

Soluble/globular proteins

Soluble/globular proteins

Transmembrane proteins

Soluble/globular proteins

Transmembrane proteins

Soluble/globular proteins

Transmembrane proteins

D Potential pathways – transmembrane channels

leading through voids of proteins with only sub-Å dimension

D Potential pathways – transmembrane channels

leading through voids of proteins with only sub-Å dimension

D Potential pathways – transmembrane channels

leading through voids of proteins with only sub-Å dimension

D Potential pathways – transmembrane channels

leading through voids of proteins with only sub-Å dimension

D Potential pathways – transmembrane channels

viable upon gain-of-function mutations

Potential pathways – transmembrane channels

notable functional consequences

Ligand-transport pathways – pathology

Only rarely considered when interpreting molecular bases of diseases

- tunnels in soluble proteins have been accepted as functionally important just recently
- hindered by the lack of information on the presence of transient tunnels and potential ones with high propensity for opening

Pathologies linked to ligand-transport pathways

Protein	Disease/pathology		
Dihydroorotate dehydrogenase	autoimmune and parasitic diseases, immunosuppression, cancer, inflammation		
Nitric oxide synthase	neurological diseases, inflammation, rheumatoid arthritis, immune-type diabetes, stroke, cancer, thrombosis, infection susceptibilities		
Glycogen phosphorylase	diabetes		
Leukotriene-A4 hydrolase	inflammatory diseases		
Neurolysin	nervous and endocrine systems disorders		
Plasma cholesteryl ester transfer protein CETP	atherosclerosis		
β-hydroxyacyl-acyl carrier protein dehydratase FabZ	gastric diseases		
voltage-gated Na, K, Ca channels	periodic paralyses, mixed arrhythmias, dilated cardiomyopathy, neuronal hyperexcitability,		

Ligand-transport pathways – drug discovery

U Tunnels promising targets in drug discovery

- new functional locations to target
- selective drugs due to relatively lower evolutionary conservation

Marques et al. 2016, Med. Res. Rev. 37: 1095-1139 Santos et al. 2017, Nat. Rev. Drug Discov. 16: 19-34
Ligand-transport pathways – drug discovery

U Tunnels promising targets in drug discovery

- new functional locations to target
- selective drugs due to relatively lower evolutionary conservation

Leukotriene A4 hydrolase/aminopeptidase

Ligand-transport pathways – drug discovery

U Tunnels promising targets in drug discovery

- new functional locations to target
- selective drugs due to relatively lower evolutionary conservation

□ Ligand-transport pathways are of functional importance not only in transmembrane proteins but also in a wide range of soluble proteins

- □ Ligand-transport pathways are of functional importance not only in transmembrane proteins but also in a wide range of soluble proteins
- **Mutations can open entirely new pathways**
 - handful of conservative mutations
 - pronounced functional impact
 - in regions otherwise functionally irrelevant

- Ligand-transport pathways are of functional importance not only in transmembrane proteins but also in a wide range of soluble proteins
- Mutations can open entirely new pathways
 - handful of conservative mutations
 - pronounced functional impact
 - in regions otherwise functionally irrelevant
- Computationally-driven methods capable of exploring transient and potential pathways efficiently
 - applicable to alternative pores and branches in transmembrane proteins
 - discover novel mutations linked to the development of various diseases

- Ligand-transport pathways are of functional importance not only in transmembrane proteins but also in a wide range of soluble proteins
- Mutations can open entirely new pathways
 - handful of conservative mutations
 - pronounced functional impact
 - in regions otherwise functionally irrelevant
- Computationally-driven methods capable of exploring transient and potential pathways efficiently
 - applicable to alternative pores and branches in transmembrane proteins
 - discover novel mutations linked to the development of various diseases
 - **D** Pathways represents interesting targets for drug discovery