

ADAM MICKIEWICZ UNIVERSITY IN POZNAŃ

Faculty of Biology

Mouse Models: COVID-19

www.amu.edu.pl

COVID-19 – SARS-CoV-2

Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is the <u>virus</u> that causes <u>coronavirus disease 2019</u> (COVID-19), the <u>respiratory illness</u> responsible for the <u>COVID-19 pandemic</u>.

- The <u>World Health Organization</u> declared the outbreak: -a <u>Public Health Emergency of International Concern</u> on 30 January 2020
- -a pandemic on 11 March 2020.

SARS-CoV-2 is a <u>positive-sense single-stranded RNA virus</u>. As described by the US <u>National Institutes of Health</u>, it is the successor to <u>SARS-CoV-1</u>, the virus that caused the <u>2002–</u> <u>2004 SARS outbreak</u>.

SARS-CoV 2 Structure

COVID-19 – Outbreak

Search by Country, Territory, or Area

WHO Coronavirus (COVID-19) Dashboard

Measures

Overview

Globally, as of 5:50pm CEST, 20 April 2022, there have been 504,079,039 confirmed cases of COVID-19, including 6,204,155 deaths, reported to WHO. As of 18 April 2022, a total of 11,324,805,837 vaccine doses have been administered.

COVID-19 Manifestations

Respiratory tract manifestations

Trends in Immunology

COVID-19 Risk Groups

5 Groups at Risk from COVID-19

Smokers

Severely overweight people

Middle-aged to elderly adults

People with chronic illnesses

Men

COVID-19 Risk Factors

10 ways to manage respiratory symptoms at home

If you have fever, cough, or shortness of breath, call your healthcare provider. They may tell you to manage your care from home. Follow these tips:

6.

7.

Cover your cough and

Wash your hands often with

hands with an alcohol-based

hand sanitizer that contains at

soap and water for at least

20 seconds or clean your

sneezes.

1. Stay home from work, school, and away from other public places. If you must go out, avoid using any kind of public transportation, ridesharing, or taxis.

> Monitor your symptoms carefully. If your symptoms get worse, call your healthcare provider immediately.

3. Get rest and stay hydrated.

2.

911

2

5. For medical emergencies, call 911 and **notify the dispatch personnel** that you have or may have COVID-19.

a facemask.

Avoid sharing personal

items with other people in

COVID-19 Risk Levels 2 » Walk, bike, or run with others | Get car 3 Grocery stores | Camping | Hotels 4 Dentist office | Doctor waiting room Offices | Walking in busy downtown Restaurants (outdoor) 5 » Home dinner parties | Backyard BBQs Airplanes | Malls | Beaches | Bowling 6 » Casinos | Restaurants (indoor) Playgrounds | Hair salons | Movie theaters | Pontoon boat ride Basketball | Public pools | Schools 8 Gyms | Amusement parks | Churches Buffets HIGH RISK 9 Big concerts | Sports stadium Bars |

For more information: www.cdc.gov/COVID19

Dr. Mathew Sima, Dr. Dennia Cunningham, Dr. Mimi Emig, Dr. Nasir Husain. Based on risk factors including inside/outside, nearness to others, exposure time, compliance likelihood, and personal risk

CS 315822-A 03/12/2020

SARS-CoV-2 Life Cycle

Trends in Immunology

SARS-CoV-2 Transmission

A **zoonosis** (plural **zoonoses**, or **zoonotic diseases**) is an <u>infectious disease</u> caused by a <u>pathogen</u> (an infectious agent, such as a bacterium, virus, <u>parasite</u> or <u>prion</u>) that has <u>jumped</u> from an animal (usually a <u>vertebrate</u>) to a human. Typically, the first infected human transmits the infectious agent to at least one other human, who, in turn, infects others.

SARS-CoV-2 Transmission

Trends in Immunology

Detection Methods

B. Indirect detection methods (Host immune response)

Mechanism of antibody detection

Antibody tests

- Detects antibodies against the virus generated by prior infection or vaccination
- Not useful for telling if you have the disease now
- Positive test result doesn't mean you can't catch the virus again
- Are usually a finger prick/blood test
- Only currently recommended by WHO for research purposes

Updated 5 April 2022

Covid-19: Protective masks

N95 Respirator NIOSH-approved	KN95 Respirator	Disposable Mask Sometimes referred to as "surgical masks" or "medical procedure masks"	Cloth Mask Non-medical, made of fabric
When worn correctly, respirators offer the highest level of protection and filter 95% of particles.	Filtration varies depending on standard. When worn correctly, KN95s provide more protection than disposable masks.	Disposable masks offer more protection than cloth masks.	Layered finely woven cloth masks offer more protection. Loosely woven cloth masks provide the least protection.

https://theconversation.com/evidenceshows-that-yes-masks-prevent-covid-19and-surgical-masks-are-the-way-to-go-167963

Covid-19: Clinical Symptoms

Covid-19: IFN-I & Clinical Symptoms

Covid-19: IFN-I & Clinical Symptoms

Mahdi Eskandarian Boroujeni, et al. Frontiers in Immunology, 2022

SARS CoV-2: Potential target tissues

SARS CoV-2: Excessive Lung Inflammation

Trends in Immunology

SARS CoV-2: Cardiovascular Complications

Covid-19: Immune Therapy

Targeting specific inflammatory molecules & pathways IL-1β, IL-6, TNF-α, GM-CSF,...

Passive immunotherapy

- Convalescent plasma therapy
- > Hyperimmune globulin therapy
- Neutralizing monoclonal antibody therapy

Immunomodulatory therapy Intravenous immunoglobulin

Immunotherapy for COVID-19

Treg targeted therapies?

Cellular immunotherapy NK cell therapy

COVID-19: Treatment

Therapeutics Under Early Investigation

Last updated: February 24, 2021

There are many therapeutics under early investigation for treatment of COVID-19 for which there is currently insufficient clinical data to recommend either for or against. This overview is not a comprehensive summary, but a list of therapeutics with strong biological plausibility that are available in the United States and are or will be studied by clinical trial.

Class/Drug	Mechanism of Action	Notable Publications*
Anakinra	 Interleukin (IL)-1 receptor antagonist; blocks activity of the proinflammatory cytokines IL-1α and IL-1β. 	<u>Cavalli, June 2020</u> <u>Huet, May 2020</u>
Baricitinib	 Janus kinase (JAK) 1 and 2 inhibitor; inhibits JAK1-2 mediated cytokine release. Disrupts endocytosis regulators and cyclin G-associated kinase; may reduce inflammation and interfere with intracellular virus assembly. 	<u>Cantini, April 2020</u>
Colchicine	 Exhibits broad anti-inflammatory and immunomodulatory properties. Disrupts microtubule formation and reduces chemotaxis, phagocytosis and migration of neutrophils. 	<u>Tardif, January 2021</u> <u>Della-Torre, August 2020</u> <u>Lopes, August 2020</u> <u>Gendelman, July 2020</u> <u>Deftereos, June 2020</u>
Interferons	 Modulate the immune response in specific—not all—viral infections. Bind to interferon-α and -β receptors on the cell membrane, resulting in various transcription factor phosphorylation. Subsequent activation of interferon-stimulated genes leads to immunomodulatory effects and interference with viral replication. 	<u>Monk, November 2020</u> <u>Wang, July 2020</u> <u>Davoudi-Monfared, May 2020</u> <u>Zhou, May 2020</u> <u>Hung, May 2020</u>
Intravenous immunoglobulin	 Derived from pooled plasma; contains antibodies typically present in adult human blood. May provide passive immune protection from viral infections via modulation of inflammation. 	<u>Sakoulas, November 2020</u> Gharebaghi, October 2020 <u>Xie, August 2020</u> <u>Sakoulas, July 2020</u> <u>Shao, April 2020</u>
Ruxolitinib	 Janus kinase (JAK) 1 and 2 inhibitor; inhibits JAK1-2 mediated cytokine release. Disrupts endocytosis regulators and cyclin G-associated kinase; may reduce inflammation and interfere with intracellular virus assembly. 	
Statins	• Statins have anti-inflammatory and immunomodulatory properties that may allow for lung protection in the setting of infection.	Zhang, August 2020 Kow, August 2020 De Spiegeleer, July 2020
Calcifediol/Vitamin D	• Prohormone of the active form of vitamin D3, calcitriol (1,25-dihydroxyvitamin D3).	<u>Murai, February 2021</u> <u>Patchen, February 2021</u> <u>Castillo, October 2020</u>

COVID-19: Treatment

COVID-19: Treatment

Mahdi Eskandarian Boroujeni, et al. Frontiers in Immunology, 2022

COVID-19: Treatment

Mahdi Eskandarian Boroujeni, et al. Frontiers in Immunology, 2022

Drug Discovery

Translational Model Systems

Fig. 4 Overview of the different translational model systems used to interrogate disease mechanisms of SARS-CoV-2.

Table 1. Cell Lines and Organoids and Animal Models Currently Being Used in COVID-19 Research

Cell lines and organoids

Cell lines & Organoids

Туре		Origin	Key points	Refs
Human airway epithelial cells		Commercially available from various vendors (Lonza, PromoCell, etc.)	Human airway epithelial cells can isolate SARS-CoV-2 and mimic infected human lung cells. After SARS-CoV-2 infection, cytopathic effects were observed.	[5]
Vero E6 cells	Wild type cells	Isolated from kidney epithelial cells of an African green monkey	Vero E6 cells are the most widely used clone used to replicate and isolate the SARS-CoV-2.	[11]
	TMPRSS2-overexpressing cells		Viral RNA copies in the culture supernatants of these cells were >100 times higher than those of wild type Vero E6 cells.	[12]
Caco-2 cells		Isolated from human colon adenocarcinoma	SARS-CoV-2 could replicate in Caco-2 cells (data not shown).	[6]
Calu-3 calls		Isolated from non-small cell lung cancer	Compared with mock control, SARS-CoV-2 S pseudovirions showed an over 500-fold increase in luciferase activities in Calu3 cells.	[7]
HEK293T cells		Isolated from human embryonic kidney (HEK) cells grown in tissue culture	Cells showed only modest viral replication.	[8]
Huh7 cells		Isolated from hepatocyte-derived cellular carcinoma cells	Cells showed about a tenfold increase in luciferase activity when transduced by SARS-CoV-2 S pseudovirions.	[7]
Human bronchial organoids		Generated from commercially available human bronchial epithelial cells	After SARS-CoV-2 infection, not only the intracellular viral genome, but also progeny virus, cytotoxicity, pyknotic cells, and moderate increases of the type I interferon signal can be observed.	[17]
Human lung organoids		Generated from human embryonic stem cells	The lung organoids, particularly alveolar type II cells, are permissive to SARS-CoV-2 infection.	[18]
Human kidne	ey organoids	Generated from human embryonic stem cells	Human kidney organoids produce infectious progeny virus.	[19]
Human liver ductal organoids		Generated from primary bie ducts isolated from human liver biopsies	Human liver ductal organoids are permissive to SARS-CoV-2 infection, and SARS-CoV-2 infection impairs the bile acid transporting functions of cholangiocytes.	[20]
Human intes	tinal organoids	Generated from primary gut epithelial stem cells	Human intestinal organoids were readily infected by SARS-CoV-2, as demonstrated by confocal and electron microscopy. Significant titers of infectious viral particles were detected.	[22,23]
Human blood vessel organoids		Generated from human induced pluripotent stem cells	SARS-CoV-2 can directly infect human blood vessel organoids.	[19]

Animal Models

Animal models						
Animal	species	Key points	Refs			
Mice	Wild type mice	SARS-CoV-2 cannot invade cells through mouse Ace2.	[11]			
	Human ACE2 transgenic mice	After SARS-CoV-2 infection, the mice show weight loss, virus replication in the lungs, and interstitial pneumonia.	[25]			
Syrian hamster		After SARS-CoV-2 infection, the hamsters show rapid breathing, weight loss, and diffuse alveolar damage with extensive apoptosis.				
Ferrets		After SARS-CoV-2 infection, acute bronchiolitis was observed in the lungs.				
Cats		After SARS-CoV-2 infection, intra-alveolar edema and congestion in the interalveolar septa were observed. Abnormal arrangement of the epithelium with loss of cilia and lymphocytic infiltration into the lamina propria were also observed.				
Cynom	nolgus macaques	SARS-CoV-2 can infect both type I and type II pneumocytes. After SARS-CoV-2 infection, pulmonary consolidation, pneumonia, and edema fluid in alveolar lumina were observed.	[29]			
Rhesu	s macaques	Infected macaques had high viral loads in the upper and lower respiratory tract, humoral and cellular immune responses, and pathologic evidence of viral pneumonia. The therapeutic effects of adenovirus-vectored vaccine, DNA vaccine candidates expressing S protein, and remdesivir treatment could be evaluated.	[30–33]			

COVID-19: Mouse Models

Scientists Develop Specialised Mouse Models To Study COVID-19

Intra Nasal vs Intra Gastric

hACE2 Expressing Mouse

SARS-CoV-2 infection in K18-ACE2 transgenic mice replicates human pulmonary disease in COVID-19

hACE2 Transgenic Mouse

Overexpression of ACE2 in the lung epithelium facilitates SARS-CoV-2 infection in mice

hACE2 Transgenic Mouse Lines

Differences between hACE2 transgenic mouse lines

						Susceptibility	to SARS-CoV		
Corresponding Author(s)	Transgene	Expressions Pattern	Tg Lines	Morbidity	Mortality (%)	Mean Survival (days post-infection)	Site of Viral Replication	Lung Pathology	Brain Pathology
	Human ACE2	Epithelial-specific expression in	Line 1	++	100	3-5	Lung and brain	++	+++
Paul B. McCray, Jr. and Stanley Perlman University of Iowa, IA	CDS driven by Keratin 18 (K18)	airways (excluding alveolar), liver, kidney, GI tract.	Line 2	++	100	3-5	Lung and brain	++	+++
	promoter	Also expression in the brain, heart	Line 3	+	100	5-7	Lung and brain	++	+++
	Human ACE2 CDS driven by CAG promoter		AC70	+	100	6.2	Lung and brain	++	•••
		Ubiquitous	AC50	+	100	6.9	n.r.	n.r.	n.r.
Chien-Te K. Tseng University of Texas Medical Branch, TX			AC12	+	100	4.5	n.r.	n.r.	n.r.
			AC22	+	0	n/a	Lung>>brain	+++	+
			AC63*	+	0	n/a	Lung only	+++	-
Hong-kui Deng and Chuan Qin Peking Union Medical College and Peking University, China	Human ACE2 CDS driven by mouse Ace2 promoter	Lung, kidney, intestine	Single line	+	0	n/a	Lung and brain	++	++

n.r. not reported. *poor breeding performance

Table 1 | GEMM designs suitable for COVID-19 and SARS-CoV-2 research

Model no.	Name	Locus/promoter	Gene to express	Expression	Additional features
Category 1	knocking-in expression cassettes or	point mutations is	to the endogenous mouse Ace	2 locus	
1	B6.mAce2 ^{KD} -hACE2 ^{KI}	mAce2/ mAce2	NACE2	Constitutive	mAce2 gene is inactivated.
2	B6.mAce2 ^{KD} -hACE2-P2A-EGPP ^{KI}	mAce2/ mAce2	HACE2-P2A-EGFP	Constitutive	mAce2 gene is inactivated; includes a reporter
3	NSG mAce2 ^{KO} -hACE2 ^{KI}	mAce2/ mAce2	+ACE2	Constitutive	mAce2 gene is inactivated; immunocompromised mouse strain background, useful for studies involving interaction of human immune system
4	NSG mAce2 ^{KO} -hACE2-P2A-EGFP ^K	mAce2/ mAce2	ACE2-P2A-EGPP	Constitutive	mAce2 gene is inactivated; includes a reporter; immunocompromised mouse strain background, useful for studies involving interaction of human immune system
5	BALB/c.mAce2 ^{KO} -hACE2 ^{KI}	mAce2/ mAce2	hACE2	Constitutive	mAce2 gene is inactivated; mouse strain background commonly used for SARS and MERS virus research
6	BALB/c.mAce2 ^{KO} -hACE2-P2A- EGFP ^{KI}	mAce2/ mAce2	ACE2-P2A-EGFP	Constitutive	mAce2 gene is inactivated; includes a reporter; mouse strain background commonly used for SARS and MERS virus research
7	86.mAce2 ^{KI-01K,82M,853K,}	mAce2/ ==Ace2	Partially humanized mAce2	Constitutive	Enables mACE2 to bind to the SARS-CoV-2 spike protein
8	NSG.mAce2 ^{K-drikean(389K}	mAce2/ mAce2	Partially humanized mAce2	Constitutive	Enables mACE2 to bind to the SARS-CoV-2 spike protein: Immunocompromised mouse strain background, useful for studies involving interaction of human immune system
9	BALB/c.mAce2 ^{k0-dik,e2v,asak}	mAce2/ mAce2	Partially humanized mAce2	Constitutive	Enables mACE2 to bind to the SARS-CoV-2 spike protein; mouse strain background commonly used for SARS and MERS virus research
10	B6.mAce2 ^{K0} -hACE2-P2A- hTMPR5S2 ^{K0}	mAce2/ ==Ace2	HACE2, HTMPR552	Constitutive	mAce2 gene is inactivated; hTMPRSS2 fused to hACE2 via a self-cleavable P2A peptide
11	NSG.mAce2 ⁴⁰ -hACE2-P2A- hTMPRSS2 ⁰	mAce2/ mAce2	+ACE2, +TMPRSS2	Constitutive	mAce2 gene is inactivated; immunocompromised mouse strain background, useful for studies involving interaction of human immune system; hTMPRS52 fused to hAC62 via a self-cleavable P2A peptide
12	BALB/c.mAce2 ^{KO} -hACE2-P2A- hTMPR5S2 ^{KO}	mAce2/ mAce2	HACE2, HTMPR552	Constitutive	mAce2 gene is inactivated; mouse strain background commonly used for SARS and MERS virus research; hTMPRSS2 fused to hACE2 via a self-cleavable P2A peptide
13	86.mAce2 ^{KD} -hACE2-IRES- hTMPR5S2 ^{KD}	mAce2/ mAce2	hACE2, hTMPR552	Constitutive	mAce2 gene is inactivated; hTMPRSS2 expressed as a separate polypeptide via an IRES
14	NSG.mAce2 ^{KO} -hACE2-IRES- hTMPRSS2 ^{KI}	mAce2/ mAce2	-ACE2, -TMPRSS2	Constitutive	mAce2 gene is inactivated; immunocompromised mouse strain background, useful for studies involving interaction of human immune system; hTMPRSS2 expressed as a separate polypeptide via an IRES
15	BALB/c.mAce2 ^{k0} -hACE2-IRES- hTMPR5S2 ⁴⁰	mAce2/ mAce2	HACE2, HTMPR552	Constitutive	mAce2 gene is inactivated; mouse strain background commonly used for SARS and MERS virus research; hTMPRSS2 expressed as a separate polypeptide via an IRES
Category 2	: knocking-in CRE-activatable or tetr	acycline-Inducible	expression cassettes into safe-	harbor loci by re-engineering existi	ing reporter or Inducer mouse lines
16	ROSA26 ^(ACTB-Los-PACE2-R2A-rdT-Los- borr)	ROSA26/ pCAG	hACE2	Constitutive	Constitutive expression of hACE2 with reporter capability
17	ROSA26 ^(ACTB-Los-P.ACE2-RES-toT-Los- b379)	ROSA26/ pCAG	*ACE2	Constitutive	Constitutive expression of hACE2 with reporter capability
18	ROSA26 ^(ACTB-Los-12⁻¹-Los-FACED-P2A- D379)	ROSA26/ pCAG	*ACE2	Tissue specific	CRE-activatable expression of hACE2 with reporter capability
19	ROSA26 ^(ACTE-Los-12[®]-Los-PACE2-REE- DSIP)	ROSA26/ pCAG	*ACE2	Tissue specific	CRE-activatable expression of hACE2 with reporter capability
20	AI63-TIGRE-TRE-hACE2-P2A-tdT	TIGRE/ TRE	+ACE2	Tetracyclin inducible	Tetracycline-inducible expression of hACE2 with reporter capability
21	A/63-TIGRE-TRE-hACE2-IRES-tdT	TIGRE/ TRE	HACE2	Tetracyclin Inducible	Tetracycline-inducible expression of hACE2 with reporter capability
Category 3	k knocking-in CRE-activatable cases	tes into the mouse	Ace2 locus	-	
22	86.mAce2 ⁴⁰⁰ -hACE2 ⁴⁰	mAce2/ mAce2	HACE2	Tissue-specific expression of hACE2 at physiological levels	The mAce2 gene is conditionally inactivated, allowing expression of hACE2.
23	NSG.mAce2 ^{eKD} -hACE2 ^{eKI}	mAce2/ mAce2	HACE2	Tissue-specific expression of hACE2 at physiological levels	The mAcs2 gene is conditionally inactivated, allowing expression of hACS2, immunocompromised mouse strain background, useful for studies involving interaction of human immune system.

hACE2 Transgenic Mouse Lines

Table continued

Category 2 Design: Cre-Lox

Category 3 Design

Survival after Infection

	K18-hACE2 [<u>66</u> , <u>67</u>]	AC70, AC22, and AC63 [59, 68]	HFH4-ACE2 [69]	Mouse ACE2 promoter-driven hACE2 Tg mice [70]
Promoter	Human K18 promoter	CAG promoter	Human HFH4 promoter	Mouse ACE2 promoter
Parental mice of zygotes	(C57BL/6J × SJL/J) F2	(C57BL/6J × C3H/HeJ) F1	(C3H × C57BL/6) F1	ICR
Viral strains	Urbani	Urbani	Urbani	PUMC01
TCID50 ^a of SARS-CoV	1.6 × 10 ^{4b}	AC70: 10 ³ AC22: 10 ⁶ AC63: 10 ⁶	7 × 10 ^{4c}	10 ⁵
Mortality (%)	Line 1: 100 Line 2: 100 Line 3: 100	AC70: 100 AC22: 0 AC63: 0	100	0
Survival days (p.i.)	Line 1: 2–5 Line 2: 3–4 Line 3: 5–7	AC70: 4-8 AC22: n.a. ^d AC63: n.a.	5–6	n.a.

^a*TCID50* 50% tissue culture infective dose

^bThe viral dosage used in the study, 2.3×10^4 plaque-forming units (PFU), was converted to the estimated TCID50 by the conversion TCID50 ≈ 0.7 PFU [71].

^cThe viral dosage used in the study, 10⁵ PFU, was converted to the estimated TCID50 by the conversion TCID50 \approx 0.7 PFU [71]. ^dNot applicable

Spike E-cadherin

Lung tissue

Histopathological analysis of SARS-CoV-2 infection in K18-hACE2 mice.a, Hematoxylin and eosin staining of lung sections from K18-hACE2 mice following mock infection or after intranasal infection with 2.5 × 104 p.f.u. SARS-CoV-2 at 2, 4 and 7 dpi.

Brain

SARS-CoV-2 infection in extra-pulmonary organs.a. SARS-CoV-2 RNA in situ hybridization of brain sections from K18-hACE2 mice following intranasal infection with 2.5 x 104 PFU of SARS-CoV-2 at 7 dpi.

Lung tissue

SARS CoV-2 Infection in K18-hACE2 Mice

Immune response to SARS-CoV-2 infection in the lungs of K18-hACE2 mice.a,b, Flow cytometric analysis of lung tissues (a) and BAL (b) at 2, 4 and 7 dpi with SARS-CoV-2.

Bronchoalveolar lavage

Lung tissue

Immune response to SARS-CoV-2 infection in the lungs of K18-hACE2 mice. Inflammatory gene expression and Immune cell influx.

Distinct transcriptional signatures are associated with early and late immune responses to SARS-CoV-2 infection.

High

D4

Neutrophil activation

Transcriptional immune signatures following SARS-CoV-2 infection. Heat maps of significantly upregulated genes during SARS-CoV-2 infection enriched in neutrophil activation pathways

Potential Therapeutic Targets

Remdesivir

As an <u>adenosine</u> nucleoside triphosphate analog (GS-443902), the <u>active metabolite</u> of remdesivir interferes with the action of viral <u>RNA-</u> <u>dependent RNA polymerase</u> and evades <u>proofreading</u> by viral <u>exoribonuclease</u> (ExoN), causing a decrease in viral RNA production.

Vaccine Development

Which animals are being used to develop a COVID-19 vaccine?

Mice are being used to test whether vaccine compounds are safe to be trialled in humans. There is only one strain of genetically altered mice that is susceptible to COVID-19. These mice were developed to research the SARS outbreak in 2003 and are now being bred for COVID-19 research.

Non-human primates are our closest living relatives. Unlike mice, they can contract the COVID-19 virus. Researchers are using primates to test the safety of vaccine compounds, discover how the virus works inside the body, and whether it can re-infect people that have already recovered from the virus.

b 0 0 =**MI-30 MI-09** ΗN hACE2 Transgenic Mouse SARS-COV-2 M^{pro} Inhibitors MI-09 (p.o. or i.p.) MI30 (i.p.) Viral Neutrophils IFN-β Lung Replication CXCL10 Macrophages Lesions in Lung in Lung in lung

a

С

The main protease (M^{pro}, also known as 3CL^{pro}), is one of the coronavirus nonstructural proteins (Nsp5) designated as a potential target for drug development^{7,8}. M^{pro} cleaves the viral polyproteins, generating 12 nonstructural proteins (Nsp4-Nsp16), including the RNA-dependent RNA polymerase (RdRp, Nsp12) and the helicase (Nsp13).

Fig. 1 Schematic diagram of the design of novel SARS-CoV-2 Mpro inhibitors. A Vero E6 Cells

Novel Therapeutic Targets

Fig. 3 Antiviral activity of six compounds against SARS-CoV-2 in cell-based assays.

Jingxin Qiao et al. Science 2021;371:1374-1378

Long COVID

Approximately 1 in 5 adults

ages 18+ have a health condition that might be related to their previous COVID-19 illness, such as:

Talk to your health care provider if you have symptoms after COVID-19

* Adults aged 65 and older at increased risk

bit.ly/MMWR7121 MAY 24, 2022

Long COVID

Signs and symptoms

Potential mechanisms

Immune dysregulation

WHO says Covid remains a global emergency but pandemic could near its end in 2023

PUBLISHED MON, JAN 30 2023-11:17 AM EST

share 🛉 💆 in i

KEY POINTS WHO chief Tedros Adhanom Ghebreyesus said Covid remains a global health emergency, though the world is in a much better place than it was a year ago.

- The WHO has estimated that at least 90% of the world's population has some level of immunity to Covid due to vaccination or infection.
- The WHO chief has previously said the end of the pandemic is in sight.

TRENDING NOW

31-year-old used her \$1,200 stimulus check to start a business on track to bring in \$1 million

North Korea fires missiles as U.S. aircraft carrier set to arrive in South

Russia stirs outrage with plan for tactical nukes in

Long COVID

WHO-COVID19

Globally, as of 7:19pm CEST, 21 April 2021, there have been 142,557,268 confirmed cases of COVID-19, including 3,037,398 deaths, reported to WHO. As of 21 April 2021, a total of 889,827,023 vaccine doses have been administered.

WHO-COVID19

C û	https://www.who.int/teams/	/health-care-readines	s-clinical-unit/covid-19/data-pla	atform			Q Szukaj		\ ⊡	۲
	Global Regions 🗡						Q :	ŻĄ Select language ∨		
	World Health Organization									
	Health Top	oics 🗸	Countries ~	Newsroom 🗸	Emergencies ~	Data ∽	About Us ~			
	Global COVID-19 COVID-19) Clinical D	ata Platform for	clinical characteri	zation and managem	ent of patier	nts with suspected or c	onfirmed		
	Global understanding of the WHO therefore invites Mem relating to hospitalized susp	severity, clinical fe ber States, health rected or confirme	eatures and prognostic fact facilities and other entities d cases of COVID-19 and d	ors of COVID-19 in different s to participate in the global eff contribute data to the Global (ettings and populations remains inc ort to collect anonymized clinical dat COVID-19 Clinical Data Platform.	omplete. a te	bout the Clinical Ma am	anagement		
	WHO will use the information	on to inform:				_				
	 Characterization of the understanding of the seven Characterization of clin 	key clinical featu erity, spectrum, an ical interventions	res and prognostic factor d impact of the disease in t s, thereby facilitating global	rs of cases of suspected or co he hospitalized population glo and national operational plan	onfirmed COVID-19, thereby increas obally, in different countries. ning during the COVID-19 pandemi	e R	egister to the platfo	orm		
	COVID-19 Clinical Data	Platform								
	The platform is a secure, lin solely for the permitted purp each case, in accordance w	nited-access, pass pose(s) for which it rith the Terms of U	word-protected platform ho is provided to WHO, and w se applicable to the Global	sted on OpenClinica. WHO w vill protect the confidentiality a COVID-19 Clinical Data Platf	ill use the anonymized COVID-19 d nd security of the Anonymized Data orm.	ata A , in Pl	cknowledgement of atform contributors	f Clinical s		
	World Health	0 Novel Coronavirus Iome Subject Mat	(nCoV : WHO Training SITE rix Notes & Discrepancies	(WHO Training SITE) Change Stu Study Audit Log Tasks –	dy/Site Soes Support	oe (Da				
	Alerts & Messages - Your current active study has been changed	Welcome to	O WHO Novel Corol epancies Assigned to Me	navirus (nCoV) Data	base @	Ara	Dre CKF	ian Spanish		
	successfully.		Subject Enrollment By Site			Pr	egnancy CRF			
	Instructions -	Site Er WHO 9	rolled Expected Enrollment I 1000	Percentage 1%		Ara	bic Chinese English French Russi	ian Spanish		

COVID-19 Manifestations

Respiratory tract manifestations

COVID-19

Trends in Immunology

Detection Methods

SARS CoV-2: Excessive Lung Inflammation

Lymphopenia † (CD4+ T, CD8+ T, NK and B-cell number) 🚽

Lymphocyte activation and dysfunction Cytokine production, TNF- α , INF- γ , IL-2 **†**

T-cells exhaustion markers (PD-1, TIM3, NKG2A) **†**

Granulocytes Neutrophil 🛉 Eosinophil 🕁 Basophils 🕁

Monocytes 🕹

Cytokine storm Inflammatory cytokines, IL-1β, IL-2, IL-6, IL-7, IL-8, IL-10; G-CSF, GM-CSF, IP10, MCP1, IFY-γ and TNF-α

> Complement activation (C3a, C5a, C5b–9) **↑**

> > Antibodies (IgM and IgG) ↑

Table 1. Leading therapeutic agents against COVID-19, evaluated and described across common parameters

Drug	Parameters	Details
Azithromycin	Status/Remarks	No improvement on clinical outcomes, but no significant increase in detrimental side-effects either
	Drug type/ Original purpose	Antibiotic
	Mode of Administration	Oral/Intravenous
	Mechanism of Action	Inhibits mRNA translation by binding to 50s subunit of bacterial ribosome
	References	Furtado et al. (2020). Oldenburg and Doan (2020)
Baricitinib	Status/Remarks	Improvement in patient status observed, no adverse side-effects reported. Currently in phase III clinical trials conducted by Eli Lilly and Co
	Drug type/ Original purpose	For rheumatoid arthritis treatment
	Mode of Administration	Oral
	Mechanism of Action	Janus kinase inhibitor. Shows anti-inflammatory activity
	References	Cantini et al. (2020)
CD24Fc	Status/Remarks	In phase III clinical trials. Preliminary results suggest effective management of COVID-associated symptoms
	Drug type/ Original purpose	nonpolymorphic regions of CD24 attached to the Fe region of human IgG1
	Mode of Administration	Intravenous
	Mechanism of Action	Immunomodulator, tempers inflammatory responses
	References	OncoImmune (2020)
Colchicine	Status/Remarks	Has been hypothesized to address inflamatory responses in COVID-19 infection, but concerns regarding adverse side-effects have been raised. Currently under clinical trial
	Drug type/ Original purpose	Anti-gout agent
	Mode of Administration	Oral
	Mechanism of Action	Inhibits microtubule polymerization, proinflammatory responses, neutrophil migration, and mitosis
	References	Cumhur Cure et al. (2020), Dalili (2020)
Dexamethasone	Status/Remarks	Shown to lower mortality rate in a recent trial, currently being provisionally approved for patient treatment in certain regions. May be effective in critically ill patients
	Drug type/	Corticosteroid
	Mode of Administration	Oral/Intravenous/Intramuscular
	Mechanism of Action	Immunosuppresant. Shows anti-inflammatory effects
	References	Horby et al. (2020)
EIDD-2801	Status/Remarks	Potent antiviral activity observed in mouse models and primary human cells. Currently under phase 2 clinical trial
	Drug type/ Original purpose	Antiviral drug. Nucleoside derivative N4-hydroxycytidine
	Mode of Administration	Oral
	Mechanism of Action	Interferes with viral replication by introducing mutations
	References	Ridgeback Biotherapeutics (2020), Sheahan et al. (2020)

COVID-19: Treatment

Table 1 (continued)

Drug	Parameters	Details
Favipiravir	Status/Remarks	Clinical studies show faster viral clearence and improvement in chest imaging. A recent clinical trial from India by Glenmark showed faster and more effective recovery rate
	Drug type/	Pyrazinecarboxamide derivative
	Original purpose	
	Mode of	Oral/Intravenous
	Administration	Jubility the vised DNA dependent DNA solutioners
	Action	innibits the viral KNA-dependent KNA polymerase
	References	Glenmark (2020), Irvani (2020)
Hydroxychloroquine	Status/Remarks	Discontinued as a recommended drug for treatment. Clinical studies show no significant benefit for patients. Adverse cardiovascular effects have been reported. However, the study by Mehra <i>et al.</i> , claiming no significant benefits of HCQ administration, has since been withdrawn
	Drug type/	Chloroquine derivative. Antimalarial drug
	Original purpose	
	Mode of	Oral
	Mechanism of	Increases lysosomal nH. Also damnens inflammatory response
	Action	increases rysosoniai pri, ruso dampens innaninatory response
	References	Chen et al. (2020c), Gautret et al. (2020), Li et al. (2020a, b, c, d, e, f), Mahevas et al. (2020), WHO (2020b)
Ivermectin	Status/Remarks	Emerging candidate against COVID-19. Initial concerns were raised over its high effective dosage concentration by Caly <i>et al.</i> , but this is being explored as a safer and more effective alternative to HCQ
	Drug type/ Original purpose	Avermectin derivative
	Mode of	Oral/topical
	Administration	
	Mechanism of Action	Targets ligand-gated ion channels of invertebrate neural cells
	References	Caly et al. (2020), Gupta et al. (2020), Heidary and Gharebaghi (2020)
Lopinavir-ritonavir	Status/Remarks	Clinical studies have demonstrated no significant benefits of lipinavir-ritonavir in COVID-19 affected patients
	Drug type/	Antiretroviral drug
	Original purpose	
	Mode of	Oral
	Mechanism of	HIV protesse inhibitor
	Action	In power minore
	References	Cao et al. (2020b), WHO (2020b)
Remdesivir	Status/Remarks	Significant benefits from administration of this drug are doubtful. Clinical studies have reported a marginal improvement in critically ill patients
	Drug type/	Nucleoside analog
	Original purpose Mode of	Intravenous
	Administration Mechanism of Action	Inhibits the viral RNA-dependent RNA polymerase
	References	Grein et al. (2020), Wang et al. (2020a, b)

Inhaled interferon beta therapy shows promise in COVID-19 trial

SNG001 diminished the risk of COVID-19 patients developing severe symptoms, reduced breathlessness and improved recovery rates.

By Hannah Balfour	
(European Pharmaceutical	
Review)	

COVID-19: Treatment

20 July 2020

No comments yet